Gene expression in failing and non-failing atrial canine myocardium
Ontology highlight
ABSTRACT: Gene expression in right atrial myocardium was compared between non-failing control and tachypaced dogs (heart failure was induced by tachycardic pacing for 6 weeks).
Project description:Spontaneous paroxysmal atrial fibrillation (PAF) is one of the very common heart rhythm disorders. The molecular mechanisms underlying PAF susceptibility and persistence are multiple and incompletely understood. To study the contribution of microRNAs (miRNAs) to the development and perpetuation of PAF, we used microarray/qPCR analyses to search for changes in miRNA expression in atrial myocardium upon pacing-induced PAF. The miRNA microarray analysis was performed at LC Sciences (Houston, TX, USA). Following screening-microarray, several miRNAs were selected for detailed real-time qPCR assay. Our results suggest that immediate-early miR remodeling of LAA underlies the development and persistence of PAF. A closed-chest model of PAF was established in postnatal pigs via a rapid atrial electrical stimulation with a controlled ventricular response rate. A pacing catheter (delivered into the right atrium via femoral vein access under fluoroscopic guidance) was connected with an external pulse generator for programmed pacing rates. The burst-pacing stimuli were repeated several times, and the induced PAF occurrence rates and durations were recorded. Burst pacing was not performed in sham-operated group. Animals were euthanized 24 hours after cessation of pacing. Given that the right atrium might have been damaged by catheter insertion, we studied miRNA expression changes associated with PAF in the left atrial appendage (LAA) from paced vs control pigs. Six piglet were randomized in two groups, the PAF group (3 replicates) and the sham-control group (3 replicates)
Project description:Note this data set has identical data files: Files GSM40994.txt and GSM40995.txt. GSE2240 contains two different experimental subsets:; 1) Comparison of atrial and ventricular gene expression (atrial tissue of patients with sinus rhythm vs. human left ventricular non-failing myocardium); The purpose of our investigation was to identify the transcriptional basis for ultrastructural and functional specialization of human atria and ventricles. Using exploratory microarray analysis (Affymetrix U133A+B), we detected 11,740 transcripts expressed in human heart, representing the most comprehensive report of the human myocardial transcriptome to date. Variation in gene expression between atria and ventricles accounted for the largest differences in this data set, as 3.300 and 2.974 transcripts showed higher expression in atria and ventricles, respectively. Functional classification based on Gene Ontology identified chamber-specific patterns of gene expression and provided molecular insights into the regional specialization of cardiomyocytes, correlating important functional pathways to transcriptional activity: Ventricular myocytes preferentially express genes satisfying contractile and energetic requirements, while atrial myocytes exhibit specific transcriptional activities related to neurohumoral function. In addition, several pro-fibrotic and apoptotic pathways were concentrated in atrial myocardium, substantiating the higher susceptibility of atria to programmed cell death and extracellular matrix remodelling observed in human and experimental animal models of heart failure. Differences in transcriptional profiles of atrial and ventricular myocardium thus provide molecular insights into myocardial cell diversity and distinct region-specific adaptations to physiological and pathophysiological conditions (Barth AS et al., Eur J Physiol, 2005). 2) Comparison of atrial gene expression in patients with permanent atrial fibrillation and sinus rhythm. Atrial fibrillation is associated with increased expression of ventricular myosin isoforms in atrial myocardium, regarded as part of a dedifferentiation process. Whether re-expression of ventricular isoforms in atrial fibrillation is restricted to transcripts encoding for contractile proteins is unknown. Therefore, this study compares atrial mRNA expression in patients with permanent atrial fibrillation to atrial mRNA expression of patients with sinus rhythm as well as to ventricular gene expression using Affymetrix U133 arrays. In atrial myocardium, we identified 1.434 genes deregulated in atrial fibrillation, the majority of which, including key elements of calcium-dependent signaling pathways, displayed down-regulation. Functional classification based on Gene Ontology provided the specific gene sets of the interdependent processes of structural, contractile and electrophysiological remodeling. In addition, we demonstrate for the first time a prominent up-regulation of transcripts involved in metabolic activities, suggesting an adaptive response to an increased metabolic demand in fibrillating atrial myocardium. Ventricular-predominant genes were five times more likely to be up-regulated in atrial fibrillation (174 genes up-regulated, 35 genes down-regulated), while atrial-specific transcripts were predominantly down-regulated (56 genes up-regulated, 564 genes down-regulated). Overall, in atrial myocardium, functional classes of genes characteristic of ventricular myocardium were found to be up-regulated (e.g. metabolic processes) while functional classes predominantly expressed in atrial myocardium were down-regulated in atrial fibrillation (e.g. signal transduction and cell communication). Therefore, dedifferentiation with adoption of a ventricular-like signature is a general feature of the fibrillating atrium, uncovering the transcriptional response pattern in pmAF (Barth AS et al., Circ Res, 2005).
Project description:Spontaneous paroxysmal atrial fibrillation (PAF) is one of the very common heart rhythm disorders. The molecular mechanisms underlying PAF susceptibility and persistence are multiple and incompletely understood. To study the contribution of microRNAs (miRNAs) to the development and perpetuation of PAF, we used microarray/qPCR analyses to search for changes in miRNA expression in atrial myocardium upon pacing-induced PAF. The miRNA microarray analysis was performed at LC Sciences (Houston, TX, USA). Following screening-microarray, several miRNAs were selected for detailed real-time qPCR assay. Our results suggest that immediate-early miR remodeling of LAA underlies the development and persistence of PAF. A closed-chest model of PAF was established in postnatal pigs via a rapid atrial electrical stimulation with a controlled ventricular response rate. A pacing catheter (delivered into the right atrium via femoral vein access under fluoroscopic guidance) was connected with an external pulse generator for programmed pacing rates. The burst-pacing stimuli were repeated several times, and the induced PAF occurrence rates and durations were recorded. Burst pacing was not performed in sham-operated group. Animals were euthanized 24 hours after cessation of pacing. Given that the right atrium might have been damaged by catheter insertion, we studied miRNA expression changes associated with PAF in the left atrial appendage (LAA) from paced vs control pigs.
Project description:Objectives: To test whether (1) electromechanical dyssynchrony induces region-specific alterations in the myocardial transcriptome and (2) dyssynchrony-induced gene expression changes can be corrected by cardiac resynchronization (CRT). Background: To date, CRT is the only heart failure treatment that can both acutely and chronically increase systolic function and prolong survival, something not yet achieved by a drug therapy. However, the mechanisms underlying the benefits of CRT remain elusive. Methods: Adult dogs underwent left bundle branch ablation (LBBB) and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, DHF, n=12) or 3 weeks followed by 3 weeks of resynchronization by bi-ventricular pacing at the same pacing rate (CRT, n=10). Control animals without LBBB were not paced (NF, n=14). Echocardiography and invasive hemodynamic measurements were performed at 3 and 6 weeks. At 6 weeks, RNA was isolated from the anterior and lateral LV walls and hybridized onto canine-specific 44K microarrays. Results: In DHF, transcriptional changes consistent with re-expression of a fetal gene program were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the left ventricle. Dyssynchrony-induced region-specific expression changes in 1050 transcripts were reversed by CRT to levels of NF hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression compared with DHF. Conclusions: Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall by reversing the fetal gene expression pattern, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall. Designed as a 1-color experiments, samples from anterior and lateral left ventricular myocardium from non-failing, DHF and CRT animals were labeled with Cy3 and hybridized onto Agilent 44K long oligonucleotide arrays.
Project description:Sinoatrial node (SAN), and right atrial (RA) fibroblasts were isolated from explanted non-failing (nHF) and HF human hearts, cultured, passaged once, and treated +/- transforming growth factor beta 1(TGF beta-1). Fibroblast pellets were subjected to comprehensive high-throughput proteomic analyses.
Project description:GSE2240 contains two different experimental subsets: 1) Comparison of atrial and ventricular gene expression (atrial tissue of patients with sinus rhythm vs. human left ventricular non-failing myocardium) The purpose of our investigation was to identify the transcriptional basis for ultrastructural and functional specialization of human atria and ventricles. Using exploratory microarray analysis (Affymetrix U133A+B), we detected 11,740 transcripts expressed in human heart, representing the most comprehensive report of the human myocardial transcriptome to date. Variation in gene expression between atria and ventricles accounted for the largest differences in this data set, as 3.300 and 2.974 transcripts showed higher expression in atria and ventricles, respectively. Functional classification based on Gene Ontology identified chamber-specific patterns of gene expression and provided molecular insights into the regional specialization of cardiomyocytes, correlating important functional pathways to transcriptional activity: Ventricular myocytes preferentially express genes satisfying contractile and energetic requirements, while atrial myocytes exhibit specific transcriptional activities related to neurohumoral function. In addition, several pro-fibrotic and apoptotic pathways were concentrated in atrial myocardium, substantiating the higher susceptibility of atria to programmed cell death and extracellular matrix remodelling observed in human and experimental animal models of heart failure. Differences in transcriptional profiles of atrial and ventricular myocardium thus provide molecular insights into myocardial cell diversity and distinct region-specific adaptations to physiological and pathophysiological conditions (Barth AS et al., Eur J Physiol, 2005). 2) Comparison of atrial gene expression in patients with permanent atrial fibrillation and sinus rhythm. Atrial fibrillation is associated with increased expression of ventricular myosin isoforms in atrial myocardium, regarded as part of a dedifferentiation process. Whether re-expression of ventricular isoforms in atrial fibrillation is restricted to transcripts encoding for contractile proteins is unknown. Therefore, this study compares atrial mRNA expression in patients with permanent atrial fibrillation to atrial mRNA expression of patients with sinus rhythm as well as to ventricular gene expression using Affymetrix U133 arrays. In atrial myocardium, we identified 1.434 genes deregulated in atrial fibrillation, the majority of which, including key elements of calcium-dependent signaling pathways, displayed down-regulation. Functional classification based on Gene Ontology provided the specific gene sets of the interdependent processes of structural, contractile and electrophysiological remodeling. In addition, we demonstrate for the first time a prominent up-regulation of transcripts involved in metabolic activities, suggesting an adaptive response to an increased metabolic demand in fibrillating atrial myocardium. Ventricular-predominant genes were five times more likely to be up-regulated in atrial fibrillation (174 genes up-regulated, 35 genes down-regulated), while atrial-specific transcripts were predominantly down-regulated (56 genes up-regulated, 564 genes down-regulated). Overall, in atrial myocardium, functional classes of genes characteristic of ventricular myocardium were found to be up-regulated (e.g. metabolic processes) while functional classes predominantly expressed in atrial myocardium were down-regulated in atrial fibrillation (e.g. signal transduction and cell communication). Therefore, dedifferentiation with adoption of a ventricular-like signature is a general feature of the fibrillating atrium, uncovering the transcriptional response pattern in pmAF (Barth AS et al., Circ Res, 2005). Keywords = human myocardium Keywords = atrial fibrillation Keywords = sinus rhythm Keywords = left ventricular gene expression Keywords: other
Project description:Canine tachycardia-induced cardiomyopathy caused by several weeks of rapid ventricular pacing is a well-established animal model of congestive heart failure. However, little is known about the underlying changes in gene expression that occur in the canine myocardium after the induction of heart failure. This project aims to compare expression profiles in left ventricular free wall samples from control dogs and dogs with pacing-induced heart failure on the custom MuscleChip. Keywords: other
Project description:Sustained atrial tachycardia leads to multiple molecular and cellular effects collectively defined as atrial tachycardia remodeling (ATR). ATR is thought to play a major role in the self-perpetuating nature of atrial fibrillation (AF) and has been a subject of intense research in large mammalian models of AF. Recently, rodents are increasingly used to gain insight on the pathophysiology AF. However, little is known regarding the effects of rapid pacing on the atria of rats and mice mainly due to technical challenges in electrophysiological studies of unanesthetized rodents. Using an implantable device for electrophysiological studies in unanesthetized rodents we examine, on a daily basis, the effects of continuous rapid atrial pacing (RAP) for at least 4 consecutive days on the developed AF substrate of Sprague-Dawley rats and C57BL6 mice. AF induction protocol consisted 10 aggressive bursts (20 seconds, double diastolic threshold, 10 ms cycle length [CL]). This protocol failed to induce AF at baseline in both species, but repeatedly induced AF episodes in rats following 2 days of sustained RAP. Microarray study of left atrial tissue from rats exposed for 2 days to RAP (70 ms CL) vs control pacing (140 ms CL) identified 304 differentially expressed genes (155 upregulated and 149 downregulated). Real-time qt-PCR confirmed the validity of the microarray. Enrichment analysis and comparison with a dataset of atrial tissue from AF patients revealed indications of increased carbohydrate metabolism, and changes in pathways that are thought to have critical role in human AF including TGF-beta and IL-6 signaling. Among 19 commonly affected genes in comparison with human AF, downregulation of FOXP1 and upregulation of the KCNK2 gene encoding the Kir2.1 potassium channel were conspicuous finding suggesting NFAT activation. Further results in line with NFAT activation included reduced expression of MIR-26, MIR-101, which were linked to upregulation of the KCNK2 in human AF. Our results demonstrate electrophysiological evidence for AF promoting effects of RAP in rats and some important molecular similarities between the effects of RAP in large and small mammalian models. The effects of atrial tachypacing are well documented in large mammals but very little is know regarding the effects of tacypacing on the rodent atria.