Cooperation between ASTER-dependent nonvesicular transport and NPC1L1 facilitates dietary cholesterol uptake
Ontology highlight
ABSTRACT: Intestinal cholesterol absorption is an important determinant of systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe, is a critical player in dietary cholesterol uptake. But how cholesterol moves within the cell downstream of NPC1L1 is unknown. Here we show that the nonvesicular sterol transporters Aster-B and -C cooperate with NPC1L1 to deliver dietary cholesterol from the gut lumen to the enterocyte ER for chylomicron packaging. Aster proteins are recruited to the enterocyte plasma membrane (PM) in response to NPC1L1-dependent cholesterol accumulation. Mice lacking Asters in intestine have impaired cholesterol absorption, and reduced plasma cholesterol. NanoSIMS imaging and tracer studies reveal delayed lipid trafficking into chylomicrons in Aster-deficient enterocytes. Interestingly, in addition to potently blocking NPC1L1, ezetimibe is also a low-affinity inhibitor of Aster-B and -C but not -A, and the structure of the Aster-C-ezetimibe complex reveals the basis for this selectivity. Our findings support a model in which NPC1L1 enriches dietary cholesterol at the apical PM, and ASTERs subsequently traffic this cholesterol to the ER. The findings identify the enterocyte Aster pathway as potential target for treatment of hypercholesterolemia. Alessandra Ferrari, PhD
ORGANISM(S): Mus musculus
PROVIDER: GSE206780 | GEO | 2023/12/21
REPOSITORIES: GEO
ACCESS DATA