DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells
Ontology highlight
ABSTRACT: T cells show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to provide a renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains a significant challenge. Here, we report an efficient serum- and feeder-free system for differentiating human PSCs into hematopoietic progenitors and T cells. This fully-defined approach allowed us to study the impact of individual proteins on blood emergence and differentiation. Providing DLL4 and VCAM1 during the endothelial-to-hematopoietic transition enhanced downstream progenitor T cell output by ~80-fold. These two proteins synergised to activate notch signalling in nascent hematopoietic stem and progenitor cells and VCAM1 additionally promoted an inflammatory transcriptional program. We also established optimised media formulations that enabled efficient and chemically defined maturation of functional CD8αβ+, CD4-, CD3+, TCRαβ+ T cells with a diverse TCR repertoire.
ORGANISM(S): Homo sapiens
PROVIDER: GSE207157 | GEO | 2022/07/02
REPOSITORIES: GEO
ACCESS DATA