Binding of cyclin D1 with genomic DNA revealed by CHIP-seq in mouse embryonic fibroblasts (MEFs)
Ontology highlight
ABSTRACT: The CHIP-seq methods were used to determine the binding of cyclin D1 to mouse genomic DNA. The detailed description of this dataset can be found in the publication "ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice" in Journal of Clinical Investigation (https://www.jci.org/articles/view/60256).
Project description:Analysis of mammary glands from tet-inducible(rtTA) transgenic mice expressing cyclin D1 using Affymetrix Mouse Gene 1.0 ST GeneChip arrays. MMTV-rtTA transgenic mice (MMTV-Mouse Mammary Tumor Virus promoter) were cross-mated to cyclin D1 transgenic mice under control of tet operon. 8-week-old tetracycline-inducible cyclin D1/rtTA bi-transgenic pregnant female mice (12 days postcoitus) were treated with doxycycline through drinking water supplementation at a final concentration of 2 mg/ml. Control mice were rtTA transgenics alone and treated in the same manner. After 7 days of doxycycline treatment, the mice were sacrificed and mammary glands taken for RNA isolation. Results provide insight into the in vivo gene expression pattern regulated by cyclin D1 through acute induction. Analysis of mammary glands from MMTV-cyclin D1/WT and MMTV-cyclin D1/KE using Affymetrix Mouse 430A v2.0 GeneChip arrays. Cyclin D1 point mutant, cyclin D1/KE K112E (K112E) contains a lysine to glutamine substitution at amino acid position 112. cyclin D1. The cyclin D1/KE mutant fails to induce cyclin D1-dependent kinase activity. Female MFD1, MFD1-KE, and WT mice were monitored twice weekly, up to 760 days, for the development of palpable tumors. Those developing palpable tumors were sacrificed within a week of tumor detection. Tumors were dissected and portions snap frozen for RNA isolation. Results provide insight into the in vivo gene expression pattern regulated by cyclin D1 that is kinase independent.
Project description:Analysis of mammary glands from tet-inducible(rtTA) transgenic mice expressing cyclin D1 using Affymetrix Mouse Gene 1.0 ST GeneChip arrays. MMTV-rtTA transgenic mice (MMTV-Mouse Mammary Tumor Virus promoter) were cross-mated to cyclin D1 transgenic mice under control of tet operon. 8-week-old tetracycline-inducible cyclin D1/rtTA bi-transgenic pregnant female mice (12 days postcoitus) were treated with doxycycline through drinking water supplementation at a final concentration of 2 mg/ml. Control mice were rtTA transgenics alone and treated in the same manner. After 7 days of doxycycline treatment, the mice were sacrificed and mammary glands taken for RNA isolation. Results provide insight into the in vivo gene expression pattern regulated by cyclin D1 through acute induction. Analysis of mammary glands from MMTV-cyclin D1/WT and MMTV-cyclin D1/KE using Affymetrix Mouse 430A v2.0 GeneChip arrays. Cyclin D1 point mutant, cyclin D1/KE K112E (K112E) contains a lysine to glutamine substitution at amino acid position 112. cyclin D1. The cyclin D1/KE mutant fails to induce cyclin D1-dependent kinase activity. Female MFD1, MFD1-KE, and WT mice were monitored twice weekly, up to 760 days, for the development of palpable tumors. Those developing palpable tumors were sacrificed within a week of tumor detection. Tumors were dissected and portions snap frozen for RNA isolation. Results provide insight into the in vivo gene expression pattern regulated by cyclin D1 that is kinase independent. Two separate control mice were positive for MMTV-rtTA transgene compared to 3 separate cyclin D1/rtTA bitransgenic female mice and 3 separate cyclin D1 KE mutant/rtTA bitransgenic female mice (Mouse Gene 1.0 ST arrays). Three separate control WT FvBmice were compared to three MMTV-cyclin D1/WT and 3 MMTV-cyclin D1/KE mice (Mouse 430A v2.0 arrays).
Project description:Mantle cell lymphoma (MCL) is an aggressive B-cell neoplasm characterized by the t(11;14)(q13;q32) translocation leading to cyclin D1 overexpression. Cyclin D1 is a major cell cycle regulator and also has a role in transcription, but the effect of the latter in tumorigenesis remains largely unknown. Here, we investigated the transcriptional role of cyclin D1 in MCL and its impact on the pathogenesis of this neoplasm. Integrating genome-wide expression analysis of cyclin D1-silenced and overexpressing cells with cyclin D1 chromatin binding profiles, we identified a cyclin D1-activated transcriptional program in MCL cells. We used microarrays to analyze the genome-wide expression modulation in cyclin D1 overexpression models established in the cyclin D1-negative lymphoblastoid cell line JVM13.
Project description:Cyclin D1 is an important cell cycle regulator but in cancer its overexpression also increases cellular migration mediated by p27KIP1 stabilization and RhoA inhibition. Recently, a common polymorphism at the exon 4-intron 4 boundary of the human cyclin D1 gene within a splice donor region was associated with an altered risk of developing cancer. Altered RNA splicing caused by this polymorphism gives rise to a variant cyclin D1 isoform termed cyclin D1b, which has the same N-terminus as the canonical cyclin D1a isoform but a distinct C-terminus. Analysis was performed of mouse cyclin D1 knockout 3T3 cells infected with splice variants of cyclin D1. 3T3 cells transduced with retroviral vectors expressing each cyclin D1 isoform were processed for expression analysis. Keywords: Cancer associated risk factor
Project description:Mantle cell lymphoma (MCL) is an aggressive B-cell neoplasm characterized by the t(11;14)(q13;q32) translocation leading to cyclin D1 overexpression. Cyclin D1 is a major cell cycle regulator and also has a role in transcription, but the effect of the latter in tumorigenesis remains largely unknown. Here, we investigated the transcriptional role of cyclin D1 in MCL and its impact on the pathogenesis of this neoplasm. Integrating genome-wide expression analysis of cyclin D1-silenced and overexpressing cells with cyclin D1 chromatin binding profiles, we identified a cyclin D1-activated transcriptional program in MCL cells.
Project description:We examined the transcriptional function of cyclin D1 in mouse development using two approaches. First, we queried association of cyclin D1 with the genome of E14.5 mouse embryos using ChIP-on-chip approach. We observed binding of cyclin D1 to several promoter regions. Second, we compared gene expression profiles between wild-type and cyclin D1-null retinas. We observed several transcripts with altered levels in cyclin D1-null organs. This SuperSeries is composed of the SubSeries listed below.
Project description:Cyclin D1 belongs to the core cell cycle machinery1, and it is frequently overexpressed in human cancers2. The full repertoire of cyclin D1 functions in normal development and in cancer cells is currently unknown. To address this question, here we introduce a novel approach that allows one to determine the set of cyclin D1-interacting proteins (D1 “interactome”) and cyclin D1-bound genomic fragments (D1 “cistrome”) in essentially any mouse organ, at any point of development or at any stage of cancer progression. Using this approach, we detected several novel tissue-specific interactors of cyclin D1. A significant number of these partners represent proteins involved in transcription. We show, using genome-wide location analysis3, that cyclin D1 occupies promoters of a very large number of genes in the developing mouse, where it binds in close proximity to transcription start sites. Bioinformatics analyses of cyclin D1-bound genomic segments in the developing embryo revealed DNA recognition sequences for several transcription factors. By querying SAGE libraries4, promoter CpG content5 and gene expression profiles of cyclin D1-null organs, we demonstrate that cyclin D1 binds promoters of highly expressed genes, and that it functions to activate or to repress gene expression in vivo. Analyses of cyclin D1 transcriptional targets reveal that cyclin D1 contributes to cell proliferation by upregulating genes required for S-phase entry and progression. Hence, cyclin D1 plays a broad transcriptional regulatory function in vivo during normal mouse development.
Project description:The cyclin D1 oncogene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the Rb protein and promotes progression through G1 to S phase of the cell cycle. Several prostate cancer cell lines and a subset of primary prostate cancer samples have increased cyclin D1 protein expression. However, the relationship between cyclin D1 expression and prostate tumor progression has yet to be clearly characterized. This study examined the effects of manipulating cyclin D1 expression in either human prostatic epithelial or stromal cells using a tissue recombination model. The data showed that overexpression of cyclin D1 in the initiated BPH-1 cell line increased cell proliferation rate, but did not elicit tumorigenicity in vivo. However, overexpression of cyclin D1 in Normal Prostate Fibroblasts (NPF) that were subsequently recombined with BPH-1 did induce malignant transformation of the epithelial cells. The present study also showed that recombination of BPH-1 + cyclin D1 overexpressing fibroblasts (NPF cyclin D1) resulted in permanent malignant transformation of epithelial cells (BPH-1 NPF-cyclin D1 cells) similar to that seen with Carcinoma Associated Fibroblasts (CAFs). Microarray analysis showed that the expression profiles between CAFs and NPF cyclin D1 cells were highly concordant including cyclin D1 upregulation. These data indicated that the tumor-promoting activity of cyclin D1 may be tissue-specific. Keywords: cyclin D1; stromal-epithelial interactions; prostate cancer; cDNA microarray
Project description:CD138-selected marrow plasma cells from newly diagnosed AL patients were studied for cyclin D1 expression. We identified patients whose plasma cells overexpressed cyclin D1 and compared them to those whose cells did not.
Project description:Cyclin D1 is a well characterised cell cycle regulator with established oncogenic capabilities. Despite these properties, studies report contrasting links to tumour aggressiveness. It has previously been shown that silencing cyclin D1 increases the migratory capacity of MDA-MB-231 breast cancer cells with concomitant increase in ‘inhibitor of differentiation 1’ (ID1) gene expression. Id1 is known to be associated with more invasive features of cancer and with the epithelial-mesenchymal transition (EMT). Here, we sought to determine if the increase in cell motility following cyclin D1 silencing was mediated by Id1 and enhanced EMT-features. To further substantiate these findings we aimed to delineate the link between CCND1, ID1 and EMT, as well as clinical properties in primary breast cancer. The increase in cell migration following cyclin D1 silencing in MDA-MB-231 cells was abolished by Id1 siRNA treatment and we observed cyclin D1 occupancy of the Id1 promoter region. Moreover, ID1 and SNAI2 gene expression was increased following cyclin D1 knock-down, an effect reversed with Id1 siRNA treatment. Similar migratory and SNAI2 increases were noted for the ER-positive ZR75-1 cell line, but in an Id1 independent manner. In a meta-analysis of 1107 breast cancer samples, CCND1 and ID1 gene expression were associated with mesenchymal-markers including SNAI1, SNAI2 and TWIST1, and with clinicopathological parameters. Finally, a greater percentage of CCND1low/ID1high tumours were found in the EMT-like ‘claudin-low’ subtype of breast cancer than in other subtypes. Together, these results indicate that increased migration of MDA-MB-231 cells following cyclin D1 silencing can be mediated by Id1 and is linked to an increase in EMT markers. Moreover, we have confirmed a relationship between cyclin D1, Id1 and EMT in primary breast cancer, supporting our in vitro findings that low cyclin D1 expression can be linked to aggressive features in subgroups of breast cancer.