Parkin Regulates Adiposity by Coordinating Mitophagy with Mitochondrial Biogenesis in White Adipocytes
Ontology highlight
ABSTRACT: Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control. However, the mechanisms by which Parkin connects mitochondrial homeostasis to cellular metabolism in adipose tissue remain unclear. Here, we demonstrate that Park2 gene (encodes Parkin) deletion specifically from adipose tissue protects mice against high-fat diet and aging-induced obesity. Despite a mild reduction in mitophagy, mitochondrial DNA (mtDNA) content and mitochondrial function are significantly increased in Park2 deficient white adipocytes. Moreover, Park2 gene deletion robustly elevates mitochondrial biogenesis by increasing Pgc1α protein stability through mitochondrial superoxide-activated Nqo1. Both in vitro and in vivo studies show that Nqo1 overexpression elevates Pgc1α protein level and mtDNA content and enhances mitochondrial activity in mouse and human adipocytes. Taken together, our findings indicate that Parkin regulates mitochondrial homeostasis by balancing mitophagy and Pgc1α-mediated mitochondrial biogenesis in white adipocytes, suggesting a potential therapeutic target in adipocytes to combat obesity and obesity-associated disorders.
Project description:Mutations in the E3 ubiquitin ligase Parkin cause autosomal recessive Parkinson’s disease. In concert with PINK1, Parkin regulates the clearance of dysfunctional mitochondria via lysosomes. In response, new mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins. Mouse and overexpression models suggests that Parkin also influences these processes, both in the nuclear cascade and at the level of the mitochondrial genome. Additionally, Parkin has been shown to prevent mitochondrial membrane permeation, impeding the escape of mitochondrial DNA (mtDNA). In line with this, serum from Parkin mutation carriers showed higher levels of circulating cell-free mtDNA (ccf-mtDNA) and inflammatory cytokines – a result of the innate immune response - which can be triggered by cytosolic mtDNA. However, Parkin’s relationship with the mitochondrial genome and the mitogenesis pathway has not been explored in patient-derived neurons. To investigate this aspect of Parkin’s cellular function endogenously, we generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from Parkin mutation carriers and healthy controls. In Parkin-deficient cells, several factors in the mitochondrial biogenesis pathway were significantly reduced, resulting in impaired mtDNA homeostasis - a phenomenon that was exacerbated in dopaminergic neurons. Moreover, in response to a lack of freely accessible NAD+, the energy sensor Sirtuin 1, which simultaneously controls mtDNA maintenance processes and mitophagy, was downregulated in Parkin-deficient neurons. However, while impaired lysosomal degradation of mitochondria was only detectable in oxidative conditions, biogenesis defects were already apparent in untreated patient neurons. This may suggest that mitophagy disruption occurs in response to acute stress. By contrast, the biogenesis pathway may be continually impaired in Parkin-associated Parkinson’s disease. Next, using a mutagenic stress model in combination with Parkin knockdown, we detected an increase in ccf-mtDNA and the cytosolic DNA sensor cGAS. To explore if ccf-mtDNA can act as damage-associated molecular pattern in the brain, we used postmortem tissue from a Parkin mutation carrier and performed single-cell RNA sequencing. In the midbrain lacking Parkin, we found a higher percentage of microglia along with an upregulation of proinflammatory cytokines in these cells. Together, our findings suggest a role for Parkin in the control of mitochondrial biogenesis and mtDNA maintenance, which protects midbrain neurons from neuroinflammation-induced degeneration. Future research in iPSC-derived neuron-microglia co-culture systems could aim at developing PD treatment approaches that target the neuronal release or microglial uptake of ccf-mtDNA.
Project description:Obesity is associated with systemic inflammation that impairs mitochondrial function. This disruption curtails oxidative metabolism, limiting adipocyte lipid metabolism and thermogenesis, a metabolically beneficial program that dissipates chemical energy as heat. Here, we show that PGC1α, a key governor of mitochondrial biogenesis, is negatively regulated at the level of its mRNA translation by the RNA-binding protein RBM43. RBM43 is induced by inflammatory cytokines and suppresses mitochondrial biogenesis in a PGC1α-dependent manner. In mice, adipocyte-selective Rbm43 disruption elevates PGC1α translation and oxidative metabolism. In obesity, Rbm43 loss improves glucose tolerance, reduces adipose inflammation, and suppresses activation of the innate immune sensor cGAS-STING in adipocytes. We further identify a role for PGC1α in safeguarding against cytoplasmic accumulation of mitochondrial DNA, a cGAS ligand. The action of RBM43 defines a translational regulatory axis by which inflammatory signals dictate cellular energy metabolism and contribute to metabolic disease pathogenesis.
Project description:Mutations in PARK2 gene are the most frequent cause of familial forms of Parkinson’s disease (PD). This gene encodes Parkin, an E3 ubiquitin ligase involved in several cellular mechanisms, such as the mitophagic process. Mutations in this gene, which cause the loss of function of Parkin, are responsible for the accumulation of damaged mitochondria. This improper disposal may generate increased levels of ROS, lower ATP production and apoptosis activation. Given the importance of mitochondrial dysfunctions and mitophagy impairment in PD pathogenesis, the aim of the present project was to investigate both whole-cell and mitochondrial proteome alterations in human skin fibroblasts of PARK2-mutated patients. To this purpose, total and mitochondrial-enriched protein fractions from fibroblasts of five PARK2-mutated patients and five control subjects were analyzed by quantitative shotgun proteomics, in order to identify proteins specifically altered by Parkin loss. Both the network-based and the GSEA analysis of proteomics results pointed out the importance of pathways in which Rab GTPase proteins are involved. An alteration of their levels also in the mitochondrial fraction may indicate a re-localization of these GTP/GDP molecular switches, master regulators of membrane trafficking. To have a more comprehensive view of the mitochondrial alterations due to PARK2 mutations, we investigated the impact of Parkin loss on mitochondrial function and network morphology. We unveiled that the mitochondrial membrane potential was reduced in PARK2-mutated patients. Nevertheless, PINK1 did not accumulate on depolarized mitochondria. Even after the treatment with CCCP, an ionophore that triggers mitophagy, the accumulation of PINK1 was less efficient in PARK2-mutated patients than in controls derived fibroblasts. The analysis of the mitochondrial network morphology showed a filamentous network with mitochondria distributed all over the cell that was comparable between PARK2-mutated patients and control subjects. Thus, our results suggested that the network morphology was not influenced by the mitochondrial depolarization and by the lack of Parkin, revealing a possible impairment of fission and, more in general, of mitochondrial dynamics. In conclusion, the present work highlighted new molecular factors and pathways altered by PARK2 mutations. Furthermore, we obtained a definition of the mitochondrial landscape and molecular mechanisms underlying the PARK2 form of Parkinson’s disease, which will help to unravel possible biochemical pathways altered also in the sporadic form of the disease. Indeed, it is known that in sporadic cases the genetic/epigenetic background and the environment lead over time to mitochondria impairment and to the accumulation of damaged organelles.
Project description:Mitochondrial dysfunction plays a major role in the pathogenesis of sporadic Parkinson’s disease (PD) and familial PD caused by mutations in the PARK2 gene. The protein, parkin, is vital for mitochondrial function, but the lack of key PD phenotypes in PARK2 knockout (KO) rodent models has hindered investigations into parkin’s role in PD pathogenesis. Human isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 KO enable studies of the effect of parkin dysfunction in dopaminergic neuronal cultures.
Project description:Mitochondrial dysfunction plays a major role in the pathogenesis of sporadic Parkinson’s disease (PD) and familial PD caused by mutations in the PARK2 gene. The protein, parkin, is vital for mitochondrial function, but the lack of key PD phenotypes in PARK2 knockout (KO) rodent models has hindered investigations into parkin’s role in PD pathogenesis. Human isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 KO enable studies of the effect of parkin dysfunction in dopaminergic neuronal cultures.
Project description:Dysfunctional Parkin-mediated mitophagic culling of senescent or damaged mitochondria is a major pathological process underlying Parkinson disease and a potential genetic mechanism of cardiomyopathy. Despite epidemiological associations between Parkinson disease and heart failure, the role of Parkin and mitophagic quality control in maintaining normal cardiac homeostasis is poorly understood.We used germline mutants and cardiac-specific RNA interference to interrogate Parkin regulation of cardiomyocyte mitochondria and examine functional crosstalk between mitophagy and mitochondrial dynamics in Drosophila heart tubes. 5 wild-type mouse hearts; 4 germline Parkin knockout mouse hearts Please note that the mouse cardiac examples were an adjunct to the Drosophila studies that comprised most of the associated publication. However, mRNA-sequencing was only performed on the mouse samples, not the Drosophila heart tubes.
Project description:Down syndrome (DS), a complex genetic disorder caused by chromosome 21 trisomy, is associated with mitochondrial dysfunction leading to the accumulation of damaged mitochondria. Here we report that mitophagy, a form of selective autophagy activated to clear damaged mitochondria is deficient in primary human fibroblasts derived from individuals with DS leading to accumulation of damaged mitochondria with consequent increases in oxidative stress. We identified two molecular bases for this mitophagy deficiency: PINK1/PARKIN impairment and abnormal suppression of macroautophagy. First, strongly downregulated PARKIN and the mitophagic adaptor protein SQSTM1/p62 delays PINK1 activation to impair mitophagy induction after mitochondrial depolarization by CCCP or antimycin A plus oligomycin. Secondly, mTOR is strongly hyper-activated, which globally suppresses macroautophagy induction and the transcriptional expression of proteins critical for autophagosome formation such as ATG7, ATG3 and FOXO1. Notably, inhibition of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) using AZD8055 (AZD) restores autophagy flux, PARKIN/PINK initiation of mitophagy, and the clearance of damaged mitochondria by mitophagy. These results recommend mTORC1-mTORC2 inhibition as a promising candidate therapeutic strategy for Down Syndrome.
Project description:This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PTEN-induced putative kinase 1 (PINK1)-Parkin mediated mitophagy, NLRP3 (NOD-like receptor family pyrin domain containing 3) inflammasome activation, and apoptosis. We found that recombinant DEK protein (rmDEK) promoted eosinophils recruitment, mitochondrial fragmentation, and outer membrane 20 (TOM20) and LC3 co-localization representing mitophagosomes in bronchoalveolar lavage fluid (BALF) in house dust mite (HDM) induced-asthma. rmDEK also reduced co-localization of mitochondrial fusion protein mitofusin1 (MFN1) and mitochondria, and the protein level of manganese superoxide dismutase (MnSOD), enhanced microtubule-associated protein1 light chain 3 (LC3) and voltage-dependent anion channels (VDAC) co-localization which also represent the mitophagosomes in airway epithelial cells, furthermore, increased dynamin-related protein 1 (DRP1) expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. In the DEK knockout mice, HDM induced asthmatic airway inflammation, MnSOD, PINK1-Parkin protein level, Parkin mediated mitophagy characterized by LC3 and Parkin co-localization in the airways, ROS generation, NLRP3 inflammation and apoptosis were fully reversed. Similar effects of rmDEK were also observed in the BEAS-2B cells, which were rescued by the autophagy inhibitor 3-MA. Moreover, DEK silencing diminished the Parkin, LC3, DRP1 translocation to mitochondria; as well as mitochondrial ROS; TOM20 and mitochondrial DNA mediated mitochondrial oxidative damage. ChIP-sequence analysis showed that DEK was enriched on the AAA domain-containing protein 3A (ATAD3A) promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models. Furthermore, ATAD3A interacted with DRP1, and knockdown of ATAD3A could down-regulate DRP1 and mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.
Project description:Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.