Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade
Ontology highlight
ABSTRACT: Immune checkpoint blockade (ICB) has significantly improved the prognosis of cancer patients, but the majority experience limited benefit, evidencing the need for new therapeutic approaches. Upregulation of sialic acid-containing glycans, termed hypersialylation, is a common feature of cancer-associated glycosylation, driving disease progression and immune escape via the engagement of Siglec-receptors on tumor-infiltrating immune cells. Here, we show that tumor sialylation correlates with distinct immune states and reduced survival in human cancers. The targeted removal of Siglec-ligands in the tumor microenvironment, using an antibody-sialidase conjugate, enhances anti-tumor immunity and halts tumor progression in several mouse tumor models. Using single-cell RNA sequencing, we reveal desialylation mechanistically to repolarize tumor-associated macrophages (TAMs) and identify Siglec-E on TAMs as the main receptor for hypersialylation. Finally, we show genetic and therapeutic desialylation, as well as loss of Siglec-E, to synergize with ICB. Thus, therapeutic desialylation represents a novel immunotherapeutic approach, shaping macrophage phenotypes and augmenting the adaptive anti-tumor immune response.
ORGANISM(S): Mus musculus
PROVIDER: GSE208133 | GEO | 2022/11/24
REPOSITORIES: GEO
ACCESS DATA