ABSTRACT: Cryptococcus neoformans is an opportunistic basidiomycete pathogen that is a major etiological agent of fungal meningoencephalitis leading to more than 180,000 deaths worldwide annually. For this pathogen, the polysaccharide capsule is a key virulence factor, which interferes with the phagocytosis by host innate immune cells, but its complex signaling networks remain elusive. In this study, we systematically analyzed capsule biosynthesis and signaling networks by using C. neoformans transcription factor (TF) and kinase mutant libraries under diverse capsule-inducing conditions, such as Dulbecco’s Modified Eagle’s (DME), Littman’s medium (LIT) and fetal bovine serum (FBS) medium. We found that deletion of GAT201, YAP1, BZP4, and ADA2 consistently causes capsule production defects in all tested media, indicating that they are capsule-regulating core TFs. Epistatic and expression analysis showed that Yap1 and Ada2 control Gat201 upstream, whereas Bzp4 and Gat201 regulate capsule production independently. We next searched for potential upstream kinases and found that mutants deleted of PKA1, BUD32, POS5, IRE1 or CDC2801 showed reduced capsule production under all three capsule induction conditions, whereas mutants deleted of HOG1 and IRK5 displayed enhanced capsule production. Notably, Pka1 and Irk5 controls induction of GAT201 and BZP4, respectively, under capsule induction condition. Finally, we monitored transcriptome profiles governed by Bzp4, Gat201, and Ada2 under capsule-inducing condition and demonstrated that these TFs regulate redundant and unique sets of downstream target genes. In conclusion, this study provides further insight into the complex regulatory mechanism of capsule production related signaling pathways in C. neoformans.