Arabidopsis histone variant H3.3 establishes a proper chromatin regulatory landscape essential for post-embryonic development [ATAC-seq (h2a.z)]
Ontology highlight
ABSTRACT: The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in chromatin structure regulation that endows seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but the loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5’ gene end distribution, which facilities chromatin opening in seeds. During germination, this H3.3-established chromatin accessibility is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3’ gene end and restricts chromatin accessibility to prevent cryptic transcription and protect gene body DNA methylation. Our results suggest a fundamental role of H3.3 in initiating chromatin opening at regulatory regions in seed to license the embryonic to post-embryonic transition.
Project description:The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in chromatin structure regulation that endows seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but the loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5’ gene end distribution, which facilities chromatin opening in seeds. During germination, this H3.3-established chromatin accessibility is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3’ gene end and restricts chromatin accessibility to prevent cryptic transcription and protect gene body DNA methylation. Our results suggest a fundamental role of H3.3 in initiating chromatin opening at regulatory regions in seed to license the embryonic to post-embryonic transition.
Project description:The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in chromatin structure regulation that endows seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but the loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5’ gene end distribution, which facilities chromatin opening in seeds. During germination, this H3.3-established chromatin accessibility is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3’ gene end and restricts chromatin accessibility to prevent cryptic transcription and protect gene body DNA methylation. Our results suggest a fundamental role of H3.3 in initiating chromatin opening at regulatory regions in seed to license the embryonic to post-embryonic transition.
Project description:The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in chromatin structure regulation that endows seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but the loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5’ gene end distribution, which facilities chromatin opening in seeds. During germination, this H3.3-established chromatin accessibility is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3’ gene end and restricts chromatin accessibility to prevent cryptic transcription and protect gene body DNA methylation. Our results suggest a fundamental role of H3.3 in initiating chromatin opening at regulatory regions in seed to license the embryonic to post-embryonic transition.
Project description:The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in chromatin structure regulation that endows seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but the loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5’ gene end distribution, which facilities chromatin opening in seeds. During germination, this H3.3-established chromatin accessibility is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3’ gene end and restricts chromatin accessibility to prevent cryptic transcription and protect gene body DNA methylation. Our results suggest a fundamental role of H3.3 in initiating chromatin opening at regulatory regions in seed to license the embryonic to post-embryonic transition.
Project description:The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in chromatin structure regulation that endows seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but the loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5’ gene end distribution, which facilities chromatin opening in seeds. During germination, this H3.3-established chromatin accessibility is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3’ gene end and restricts chromatin accessibility to prevent cryptic transcription and protect gene body DNA methylation. Our results suggest a fundamental role of H3.3 in initiating chromatin opening at regulatory regions in seed to license the embryonic to post-embryonic transition. Transcriptome, chromatin accessibility, H3.3 and H2A.Z enrichment, and DNA methylation were examined in Col or h3.3ko mutant
Project description:affy_rice_2012_01 - ovation - One of the key questions for future agriculture will be to save agronomical relevant biodiversity. To do so, it is important to select the best crop cultivars that will germinate efficiently (good seed vigor) and for a long period of time (good seed longevity). Surprisingly, while mankind rely heavily on cereals, very few studies have identified genes positively related to cereal seed vigor and longevity. To close this scientific gap, we aimed to identify genes positively involved in rice seed vigor and longevity. We thus used a “controlled deterioration treatment (Tesnier et al., 2002) to mimic natural seed ageing. Seeds are first equilibrated at 25°C and 85% relative hygrometry during three days. Then, during 15 days, three different batch of seeds are either (i) kept at 25°C and 85% RH (control seeds), (ii) placed at 40°C and 85% RH (loss of seed vigor) or (iii) placed at 45°C and 85% RH (loss of germination capacity). Finally, seeds are equilibrated at 25°C and 32% RH during three days. Using this CDT treatment, we obtained rice seeds with contrasted seed vigor or germination capacity. We extracted the total RNA from the embryos and we analysed their transcriptome using the Affymetrix Rice Genome Array.-We applied a Controlled Deterioration Treatment (CDT) to seeds from the reference rice cultivar Nipponbare. First, all seeds are equilibrated at 25°C and 85% relative hygrometry. Then, depending on the treatment, seeds are placed at 25, 40 or 45°C in 85% relative hygrometry before being finally equilibrated at 25°C and 32% relative hygrometry. The germination of the three seed batches was measured during five days with one measure every 8h. Seeds placed at 25°C during the whole experiment were similar to control seeds kept in the fridge and germinated at nearly 100% in 48h. Seeds placed at 40°C during 15 days germinate at 74% but show altered seedling phenotypes (loss of seed vigor). Finally, seeds placed at 45°C do not germinate.
Project description:affy_rice_2012_01 - ivt - One of the key questions for future agriculture will be to save agronomical relevant biodiversity. To do so, it is important to select the best crop cultivars that will germinate efficiently (good seed vigor) and for a long period of time (good seed longevity). Surprisingly, while mankind rely heavily on cereals, very few studies have identified genes positively related to cereal seed vigor and longevity. To close this scientific gap, we aimed to identify genes positively involved in rice seed vigor and longevity. We thus used a “controlled deterioration treatment (Tesnier et al., 2002) to mimic natural seed ageing. Seeds are first equilibrated at 25°C and 85% relative hygrometry during three days. Then, during 15 days, three different batch of seeds are either (i) kept at 25°C and 85% RH (control seeds), (ii) placed at 40°C and 85% RH (loss of seed vigor) or (iii) placed at 45°C and 85% RH (loss of germination capacity). Finally, seeds are equilibrated at 25°C and 32% RH during three days. Using this CDT treatment, we obtained rice seeds with contrasted seed vigor or germination capacity. We extracted the total RNA from the embryos and we analysed their transcriptome using the Affymetrix Rice Genome Array.-We applied a Controlled Deterioration Treatment (CDT) to seeds from the reference rice cultivar Nipponbare. First, all seeds are equilibrated at 25°C and 85% relative hygrometry. Then, depending on the treatment, seeds are placed at 25, 40 or 45°C in 85% relative hygrometry before being finally equilibrated at 25°C and 32% relative hygrometry. The germination of the three seed batches was measured during five days with one measure every 8h. Seeds placed at 25°C during the whole experiment were similar to control seeds kept in the fridge and germinated at nearly 100% in 48h. Seeds placed at 40°C during 15 days germinate at 74% but show altered seedling phenotypes (loss of seed vigor). Finally, seeds placed at 45°C do not germinate.
Project description:affy_rice_2012_01 - ovation - One of the key questions for future agriculture will be to save agronomical relevant biodiversity. To do so, it is important to select the best crop cultivars that will germinate efficiently (good seed vigor) and for a long period of time (good seed longevity). Surprisingly, while mankind rely heavily on cereals, very few studies have identified genes positively related to cereal seed vigor and longevity. To close this scientific gap, we aimed to identify genes positively involved in rice seed vigor and longevity. We thus used a “controlled deterioration treatment (Tesnier et al., 2002) to mimic natural seed ageing. Seeds are first equilibrated at 25°C and 85% relative hygrometry during three days. Then, during 15 days, three different batch of seeds are either (i) kept at 25°C and 85% RH (control seeds), (ii) placed at 40°C and 85% RH (loss of seed vigor) or (iii) placed at 45°C and 85% RH (loss of germination capacity). Finally, seeds are equilibrated at 25°C and 32% RH during three days. Using this CDT treatment, we obtained rice seeds with contrasted seed vigor or germination capacity. We extracted the total RNA from the embryos and we analysed their transcriptome using the Affymetrix Rice Genome Array.-We applied a Controlled Deterioration Treatment (CDT) to seeds from the reference rice cultivar Nipponbare. First, all seeds are equilibrated at 25°C and 85% relative hygrometry. Then, depending on the treatment, seeds are placed at 25, 40 or 45°C in 85% relative hygrometry before being finally equilibrated at 25°C and 32% relative hygrometry. The germination of the three seed batches was measured during five days with one measure every 8h. Seeds placed at 25°C during the whole experiment were similar to control seeds kept in the fridge and germinated at nearly 100% in 48h. Seeds placed at 40°C during 15 days germinate at 74% but show altered seedling phenotypes (loss of seed vigor). Finally, seeds placed at 45°C do not germinate. 6 arrays - rice; treated vs untreated comparison
Project description:affy_rice_2012_01 - ivt - One of the key questions for future agriculture will be to save agronomical relevant biodiversity. To do so, it is important to select the best crop cultivars that will germinate efficiently (good seed vigor) and for a long period of time (good seed longevity). Surprisingly, while mankind rely heavily on cereals, very few studies have identified genes positively related to cereal seed vigor and longevity. To close this scientific gap, we aimed to identify genes positively involved in rice seed vigor and longevity. We thus used a “controlled deterioration treatment (Tesnier et al., 2002) to mimic natural seed ageing. Seeds are first equilibrated at 25°C and 85% relative hygrometry during three days. Then, during 15 days, three different batch of seeds are either (i) kept at 25°C and 85% RH (control seeds), (ii) placed at 40°C and 85% RH (loss of seed vigor) or (iii) placed at 45°C and 85% RH (loss of germination capacity). Finally, seeds are equilibrated at 25°C and 32% RH during three days. Using this CDT treatment, we obtained rice seeds with contrasted seed vigor or germination capacity. We extracted the total RNA from the embryos and we analysed their transcriptome using the Affymetrix Rice Genome Array.-We applied a Controlled Deterioration Treatment (CDT) to seeds from the reference rice cultivar Nipponbare. First, all seeds are equilibrated at 25°C and 85% relative hygrometry. Then, depending on the treatment, seeds are placed at 25, 40 or 45°C in 85% relative hygrometry before being finally equilibrated at 25°C and 32% relative hygrometry. The germination of the three seed batches was measured during five days with one measure every 8h. Seeds placed at 25°C during the whole experiment were similar to control seeds kept in the fridge and germinated at nearly 100% in 48h. Seeds placed at 40°C during 15 days germinate at 74% but show altered seedling phenotypes (loss of seed vigor). Finally, seeds placed at 45°C do not germinate. 12 arrays - rice; treated vs untreated comparison
Project description:Seed maturation, dormancy and germination are distinct physiological processes. Transition from maturation to dormancy, and from dormancy into germination are not only critical developmental phases in the plant life cycle but are also important agricultural traits. These developmental processes and their phase transitions are fine determined and coordinately regulated by genetic makeup and environmental cues. SCARECROW-LIKE15 (SCL15) has been demonstrated to be essential for repressing the seed maturation programme in vegetative tissues (Gao et al., Nat Commun, 2015, 6:7243). Here we report that SCL15 is also important for seed dormancy maintenance, germination timing and seed vigor performance based on the effects of SCL15 mutation on plant germination, growth and reproduction when compared with wild type Arabidopsis and over-expression lines 35S:SCL15 and Napin:SCL15. Seed dormancy is enhanced by the mutation of SCL15 in a GA signaling dependent way, indicating that SCL15 plays a negative role for primary dormancy release. Seed germination is positively regulated by SCL15 through interaction with ABA, GA and auxin signaling. SCL15 acts as positive regulator of seed vigor and effect of SCL15 mRNA abundance on seed reserve accumulation and seed development during late embryogenesis may contribute to the seed vigor performance.