Project description:Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important in innate immunity. Here, we show that T cell death-associated gene 51 (TDAG51/PHLDA1) is a novel coactivator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3 to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a coactivator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.
Project description:FOXO1 is highly expressed in normal B cells and in most types of non-Hodgkinl lymphoma. In Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma(cHL) expression of FOXO1 is low or absent. We overexpressed constitutively active mutant of FOXO1 fused in frame with estrogen receptor ligand-binding domain (FOXO1(3A)ER), which can be activated by 4-Hydroxytamoxifen (4-OHT), in cHL cell lines KM-H2 and L428. Activation of the FOXO1 with 4-OHT resulted in inhibition of proliferation and apoptosis. Using gene-expression array we found that FOXO1 activates transcription of known and potential tumor suppressor genes: CDKN1B, PMAIP1, BCL2L11, TNFSF10, FBXO32, CBLB). Of note, FOXO1 repressed transcription of several cytokines and cytokine receptors, which are known tobe involved in pathogenesis of cHL (e.g. CCL5, CXCR5, TNFRSF8). Taken togather our data indicate important role of FOXO1 repression in pathogenesis of cHL. KM-H2 and L428 cells expressing constitutively active mutant of human FOXO1 fused in frame with estrogen receptor ligand-binding domain were incubated with 200 µM 4-OHT or vehicle (ethanol). After 24 h, total RNA was isolated with RNeasy mini kit (QIAGEN). Microarray analyses were performed using 200 ng of total RNA as starting material and 5.5 µg ssDNA per hybridization (GeneChip Fluidics Station 450; Affymetrix, Santa Clara, CA). The total RNAs were amplified and labeled following the Whole Transcript (WT) Sense Target Labeling Assay (http://www.affymetrix.com). Labeled ssDNA was hybridized to Human Gene 1.0 ST Affymetrix GeneChip arrays (Affymetrix, Santa Clara, CA). The chips were scanned with a Affymetrix GeneChip Scanner 3000 and subsequent images analyzed using Affymetrix® Expression Console Software (Affymetrix). Probe level data were obtained using the robust multichip average (RMA) normalization algorithm.
Project description:The gene expression of mice with osteoblast-specific beta-catenin activation or FoxO1 deactivation are each compared to that of Wt. A. Wt mice (n=4) B. Osteoblast specific beta-catenin constitutively expressed mice (n=3) C. Osteoblast specific FoxO1 deleted mice (n=3)
Project description:FOXO1 is highly expressed in normal B cells and in most types of non-Hodgkinl lymphoma. In Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma(cHL) expression of FOXO1 is low or absent. We overexpressed constitutively active mutant of FOXO1 fused in frame with estrogen receptor ligand-binding domain (FOXO1(3A)ER), which can be activated by 4-Hydroxytamoxifen (4-OHT), in cHL cell lines KM-H2 and L428. Activation of the FOXO1 with 4-OHT resulted in inhibition of proliferation and apoptosis. Using gene-expression array we found that FOXO1 activates transcription of known and potential tumor suppressor genes: CDKN1B, PMAIP1, BCL2L11, TNFSF10, FBXO32, CBLB). Of note, FOXO1 repressed transcription of several cytokines and cytokine receptors, which are known tobe involved in pathogenesis of cHL (e.g. CCL5, CXCR5, TNFRSF8). Taken togather our data indicate important role of FOXO1 repression in pathogenesis of cHL.
Project description:Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3–7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.
Project description:Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3–7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.
Project description:Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3–7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.