Transcriptomics

Dataset Information

0

Macrophage depletion blocks congenital SARM1-dependent neuropathy


ABSTRACT: Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified two rare NMNAT2 missense variants in two brothers afflicted with a progressive neuropathy syndrome. The polymorphisms result in amino acid substitutions, V98M and R232Q, which reduce NMNAT2 NAD+-synthetase activity.  We generated a mouse model of the human syndrome and found that Nmnat2V98M/Nmnat2R232Q compound-heterozygous CRISPR mice survive to adulthood but develop progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes are all SARM1-dependent. Remarkably, macrophage depletion therapy blocks and reverses neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induces an inflammatory neuropathy and highlight the potential of immune therapy to treat this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation.

ORGANISM(S): Mus musculus

PROVIDER: GSE210403 | GEO | 2022/10/25

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2022-08-22 | PXD035400 | Pride
2024-04-30 | GSE252292 | GEO
| PRJNA865584 | ENA
2022-11-29 | PXD033528 | Pride
2019-03-01 | GSE124932 | GEO
2021-08-14 | GSE182091 | GEO
2020-02-23 | GSE136221 | GEO
| PRJNA1059265 | ENA
2020-02-23 | GSE136284 | GEO
2021-12-16 | GSE190585 | GEO