Project description:Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO)-dependent reactive oxygen species (ROS) formation contributes to the development of diabetic cardiomyopathy by inducing mitochondrial and cardiomyocyte dysfunction. Yet, it is unclear whether, in addition to the direct effects exerted by MAO-dependent ROS on mitochondria, MAO activity is able to post-transcriptionally regulate cardiomyocyte function and survival in diabetes. To this aim, we performed gene and miRNA expression profiling in cardiac tissue from a mouse model of type 1 diabetes (T1D) with or without pharmacological MAO inhibition. We found that MAO-dependent ROS generation in T1D hearts leads to profound transcriptomic changes, affecting autophagy and pro-survival pathways activation. MAO activity in T1D hearts affected expression levels of miR-133a-3p, -193a-3p, and -27a-3p that target insulin-like growth factor receptor 1 (Igf1r), growth factor receptor bound protein 10 and inositol polyphosphate 4 phosphatase type 1A, respectively, all components of the Igf1r/PI3K/Akt signaling pathway. Indeed, Akt activation was significantly downregulated in T1D hearts, whereas MAO inhibition restored the activation of this pro-survival pathway. The present study provides an important link between MAO activity, transcriptomic changes, and activation of pro-survival signaling and autophagy in diabetic cardiomyopathy.
Project description:Diabetes leads to cardiomyopathy and heart failure, the leading cause of death for diabetic patients. Monoamine oxidase (MAO)-dependent reactive oxygen species (ROS) formation contributes to the development of diabetic cardiomyopathy by inducing mitochondrial and cardiomyocyte dysfunction. Yet, it is unclear whether, in addition to the direct effects exerted by MAO-dependent ROS on mitochondria, MAO activity is able to post-transcriptionally regulate cardiomyocyte function and survival in diabetes. To this aim, we performed gene and miRNA expression profiling in cardiac tissue from a mouse model of type 1 diabetes (T1D) with or without pharmacological MAO inhibition. We found that MAO-dependent ROS generation in T1D hearts leads to profound transcriptomic changes, affecting autophagy and pro-survival pathways activation. MAO activity in T1D hearts affected expression levels of miR-133a-3p, -193a-3p, and -27a-3p that target insulin-like growth factor receptor 1 (Igf1r), growth factor receptor bound protein 10 and inositol polyphosphate 4 phosphatase type 1A, respectively, all components of the Igf1r/PI3K/Akt signaling pathway. Indeed, Akt activation was significantly downregulated in T1D hearts, whereas MAO inhibition restored the activation of this pro-survival pathway. The present study provides an important link between MAO activity, transcriptomic changes, and activation of pro-survival signaling and autophagy in diabetic cardiomyopathy.
Project description:AimsMonoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function.ResultsIn wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B(-/-)) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics.InnovationOur study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function.ConclusionUnder conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria.
Project description:Mucosal epithelial cell integrity is an important component of innate immunity and it protects the host from an environment rich in microorganisms. Virulence factors from Gram-negative bacteria [e.g. lipopolysaccharide (LPS)] induce significant pro-inflammatory cytokine expression. Monoamine oxidase (MAO) inhibitors reduce cytokine expression in a variety of inflammatory models and may therefore have therapeutic potential for a number of inflammatory diseases. We tested the anti-inflammatory therapeutic potential of a recently developed reversible MAO-B inhibitor (RG0216) with reduced transport across the blood-brain barrier. In an epithelial cell culture model, RG0216 significantly decreased LPS-induced interleukin (IL)-6 and IL-1β gene and protein expression and was as effective as equimolar concentrations of deprenyl (an existing irreversible MAO-B inhibitor). Hydrogen peroxide and modulating dopamine receptor signaling had no effect on cytokine expression. We showed that LPS-induced expression of IL-6 and IL-1β was cAMP dependent, that IL-6 and IL-1β expression were induced by direct cAMP activation (forskolin) and that RG0216 and deprenyl effectively reduced cAMP-mediated cytokine expression. Targeted protein kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) activation regulated IL-6 and IL-1β expression, albeit in different ways, but both cytokines were effectively decreased with RG0216. RG0216 reduction of LPS-induced cytokine expression occurred by acting downstream of the cAMP-PKA/EPAC signaling cascade. This represents a novel mechanism by which MAO-B selective inhibitors regulate LPS-induced IL-6 and IL-1β expression.
Project description:Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-?B, mTOR, HIF-1?, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1?, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-?B, COX-2 and AMPK?. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process.
Project description:The last major advance in the treatment of glioblastoma multiforme (GBM) was the introduction of temozolomide in 1999. Treatment with temozolomide following surgical debulking extends survival rate compared to radiotherapy and debulking alone. However, virtually all glioblastoma patients experience disease progression within 7 to 10 months. Although many salvage treatments, including bevacizumab, rechallenge with temozolomide, and other alkylating agents, have been evaluated, none of these clearly improves survival. Monoamine oxidase B (MAOB) is highly expressed in glioblastoma cell mitochondria, and mitochondrial function is intimately tied to treatment-resistant glioblastoma progression. These glioblastoma properties provide a strong rationale for pursuing a MAOB-selective pro-drug treatment approach that, upon drug activation, targets glioblastoma mitochondria, especially mitochondrial DNA. MP-MUS is the lead compound in a family of pro-drugs designed to treat GBM that is converted into the mature, mitochondria-targeting drug, P(+)-MUS, by MAOB. We show that MP-MUS can successfully kill primary gliomas in vitro and in vivo mouse xenograft models.