Project description:To investigate the different gens expression and RNA methylation degree in the cervical immortalized cervical cells and cervical cancer cells,
Project description:To investigate the different gens expression in the cervical immortalized cervical cells (H8 cells), cervical cancer cells (SiHa cells) and KD HSPA9 SiHa cells.
Project description:Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. However, the contribution of AS to the control of embryonic stem cell (ESC) pluripotency is not well understood. Here, we identify an evolutionarily conserved ESC-specific AS event that changes the DNA binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency including OCT4, NANOG, NR5A2 and GDF3, while concomitantly repressing genes required for ESC differentiation. Remarkably, this isoform also promotes the maintenance of ESC pluripotency and the efficient reprogramming of somatic cells to induced pluripotent stem cells. These results thus reveal that an AS switch plays a pivotal role in the regulation of pluripotency and functions by controlling critical ESC-specific transcriptional programs. Exons 18 and 18b form a mutually exclusive splicing event. The FOXP1 (non-ES) isoform contains only exon 18 and not 18b, while the FOXP1-ES isoform contains only exon 18b and not 18. To investigate whether FOXP1 and FOXP1-ES control different sets of genes, we performed knockdowns using custom siRNA pools targeting FOXP1 exons 18 or 18b in undifferentiated H9 cells, followed by RNA-Seq profiling.
Project description:To investigate the specific role of Foxp1 in kidney tubular system, we specifically deleted Foxp1 expression in kidney distal nephrons and collecting ducts. We examined the effects of Foxp1 on IC differentiation and urine acidification. Chip-seq was used to identify Foxp1 target genes.
Project description:Expression of the forkhead transcription factor FOXP1 is essential for early B cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B cell lymphoma (DLBCL) and mucosa-associated lymphoid tissue (MALT) lymphoma, being associated with poor prognosis. Here, by gene expression microarray [GSE51382] and quantitative RT-PCR analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation-sequencing (ChIP-seq), we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs but expression strongly decreases during plasma PC differentiation. Moreover, as compared to IgM+ MBCs, IgG+ MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant overexpression of FOXP1 might contribute to lymphomagenesis by blocking terminal B cell differentiation. OXP1 ChIP-seq profile in primary human memory B cells (MBCs) and B-cell lines
Project description:Long-lived quiescent mammary stem cells (MaSCs) are presumed to coordinate the dramatic expansion of ductal epithelium that occurs through the different phases of postnatal development, but little is known about the molecular regulators that underpin the activation of MaSCs. Here we show that ablation of the transcription factor Foxp1 in the mammary gland profoundly impairs ductal morphogenesis, resulting in a rudimentary tree throughout adult life. Foxp1-deficient glands were highly enriched for quiescent Tspan8hi MaSCs, which failed to become activated, even in competitive transplantation assays, and therefore harbor a cell-intrinsic defect. Luminal cells aberrantly expressed basal genes, suggesting that Foxp1 may also contribute to cell-fate decisions. Notably, Foxp1 was uncovered as a direct repressor of the Tspan8 gene in basal cells and deletion of Tspan8 could rescue the profound defects in ductal morphogenesis elicited by Foxp1 loss. Thus, a single transcriptional regulator, Foxp1, can control the exit of MaSCs from dormancy to orchestrate differentiation and development.
Project description:Expression of the forkhead transcription factor FOXP1 is essential for early B cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B cell lymphoma (DLBCL) and mucosa-associated lymphoid tissue (MALT) lymphoma, being associated with poor prognosis. Here, by gene expression microarray [GSE51382] and quantitative RT-PCR analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation-sequencing (ChIP-seq), we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs but expression strongly decreases during plasma PC differentiation. Moreover, as compared to IgM+ MBCs, IgG+ MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant overexpression of FOXP1 might contribute to lymphomagenesis by blocking terminal B cell differentiation.
Project description:To provide insight into the role of and target genes of the transcription factor FOXP1 in mature human B cells and in B cell non-Hodkgin lymhomas, we performed gene expression microarray studies, upon ectopic overexpression or silencing of FOXP1 in these cells. human memory B cells from 2 separate donors were transduced with LZRS-FOXP1-IRES-YFP or LZRS-IRES-YFP (negative control); DLBCL cell lines OCI-Ly1, OCI-Ly7, and OCI-Ly10 were transduced with LZRS-FOXP1-IRES-YFP or LZRS-IRES-YFP (negative control); DLBCL cell lines OCI-Ly1, OCI-Ly7, and OCI-Ly10 were transiently transfected with siRNA targeting FOXP1 or sigenome non-targeting siRNA (negative control), using the Lonza nucleofection system.