Intrasite and Intersite expression analysis of Mytilus californianus
Ontology highlight
ABSTRACT: Transcriptional analysis of the effects of natural environmental variation across the vertical distribution of Mytilus californianus within a single mussel bed Keywords: Environmental Response
Project description:Transcriptional analysis of the effects of natural environmental variation across the vertical distribution of Mytilus californianus within a single mussel bed Keywords: Environmental Response 30 Biological replicates from plots sampled at 3 different verticle tide heights above the MLLW at Strawberry Hill Oregon. 15 mussels were sampled after a mid-day emmersion event and 15 mussels were sampled after a 1 hour recovery at ambient seawater temperatures. 1 replicate per array, compared using a common reference sample. 50 Biological replicates for 5 plots sampled at 2 different verticle tide heights above the MLLW at Boiler Bay Oregon. 25 mussels were sampled after a mid-day emmersion event and 25 mussels were sampled after a 1 hour recovery at ambient seawater temperatures. Pooled RNA from 5 biological replicates from each plot per array, compared using a common reference sample.
Project description:Transcriptional analysis of the effects of natural environmental variation across the latitudinal range of Mytilus californianus Keywords: Environmental response
Project description:Transcriptional profiling of the mantle tissue across the four stages of male gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of female gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of the mantle tissue across the four stages of female gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Mantle tissue from individual animals in different gonad maturation stages were analyzed in a complete loop design. Dual color competitive hybridizations (stage 4 vs stage 1, 2 vs 1, 3 vs 2, 4 vs 3) including label swap. Single individuals. Four biological replicates. One replicate per array.
Project description:Transcriptional profiling of the mantle tissue across the four stages of male gonads development (winter peak) in a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -March 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the M-bM-^@M-^\hotM-bM-^@M-^] months (MayM-bM-^@M-^SAugust) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Mantle tissue from individual animals in different gonad maturation stages were analyzed in a complete loop design. Dual color competitive hybridizations (stage 4 vs stage 1, 2 vs 1, 3 vs 2, 4 vs 3) including label swap. Single individuals. Four biological replicates. One replicate per array.
Project description:Direct comparison of the transcriptional patterns between male and female in the digestive gland of a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -February March 2008 (four stages, winter peak). Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the Digestive gland (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional profiling of natural population of mussels (Mytilus galloprovincialis) -digestive gland tissue- comparing female individuals sampled in the Bizerta Lagoon, Tunisia, across May 2007 - April 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:Transcriptional analysis of the effects of natural environmental variation across the latitudinal range of Mytilus californianus 5 Biological replicates from 4 separate populations of mussels were compared using a common reference sample. Dye swap analysis was performed for each replicate.
Project description:Direct comparison of the transcriptional patterns between male and female in the digestive gland of a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -February March 2008 (four stages, winter peak). Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the Digestive gland (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Test/reference design (female/male). Direct comparison of RNA extracts obtained from the Digestive gland tissue of female and male animals. Two (male, female) x four conditions (gonad developmental stage 1, stage 2, stage 3, stage 4). Dual color competitive hybridizations with label swap. Single individuals. Four biological replicates. One replicate per array.