Reprogramming Muller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors.
Ontology highlight
ABSTRACT: Many neurodegenerative diseases cause degeneration of specific types of neurons. For example, glaucoma leads to death of retinal ganglion cells, leaving other neurons intact. Neurons are not regenerated in the adult mammalian central nervous system. However, in non-mammalian vertebrates, glial cells spontaneously reprogram into neural progenitors and replace neurons after injury. We have recently developed strategies to stimulate regeneration of functional neurons in the adult mouse retina by overexpressing the proneural factor Ascl1 in Müller glia. In this report, we test additional transcription factors (TFs) for their ability to direct regeneration to particular types of retinal neurons. We engineered mice to express different combinations of TFs in MG, including Ascl1, Pou4f2, Islet1 and Atoh1. Using IHC, scRNA-seq, scATAC-seq, and electrophysiology we find retinal ganglion-like cells can be regenerated in the damaged adult mouse retina in vivo with targeted overexpression of developmental RGC-transcription factors.
ORGANISM(S): Mus musculus
PROVIDER: GSE211077 | GEO | 2022/09/15
REPOSITORIES: GEO
ACCESS DATA