Synaptic Scaling of Corticostriatal Circuits Underlies Hyperactivity in GABA Transporter-1 Deficient Mice
Ontology highlight
ABSTRACT: To explore the potential mediators of corticostriatal synaptic scaling in GAT1–/– mice, whole-tissue mRNA sequencing was carried out for the dorsal striatum of GAT1+/+ and GAT1–/– mice.
Project description:Homeostatic synaptic scaling entails adjustment of synaptic strength on a cell to prolonged changes of neuronal activity, which is postulated to participate in neuropsychiatric disorders in vivo. Here, we find that sustained elevation in ambient GABA levels, by either genetic deletion or pharmacological blockade of GABA transporter-1 (GAT1), leads to synaptic scaling up of corticostriatal pathways, which underlies locomotor hyperactivity. Meanwhile, medium spiny neurons of the dorsal striatum exhibit an aberrant increase in excitatory synaptic transmission and corresponding structural changes in dendritic spines. Mechanistically, GAT1 deficiency dampens the expression and function of metabotropic glutamate receptors (mGluRs) and endocannabinoid (eCB)-dependent long-term depression of excitatory transmission. Conversely, restoring mGluR function in GAT1 deficient mice rescues excitatory transmission. Lastly, pharmacological potentiation of mGluR-eCB signaling or inhibition of homomeric-GluA1 AMPA receptors eliminates locomotor hyperactivity in the GAT1 deficient mice. Together, these results reveal a synaptic scaling mechanism in corticostriatal pathways that regulate locomotor activity.
Project description:Homeostatic control of pyramidal neuron firing rate involves a functional balance of feedforward excitation and feedback inhibition in neocortical circuits. Here, we reveal a dynamic scaling in vesicular excitatory (vesicular glutamate transporters VGLUT1 and VGLUT2) and inhibitory (vesicular inhibitory amino acid transporter VIAAT) transporter mRNA and synaptic protein expression in rat neocortical neuronal cultures, using a well established in vitro protocol to induce homeostatic plasticity. During the second and third week of synaptic differentiation, the predominant vesicular transporters expressed in neocortical neurons, VGLUT1 and VIAAT, are both dramatically upregulated. In mature cultures, VGLUT1 and VIAAT exhibit bidirectional and opposite regulation by prolonged activity changes. Endogenous coregulation during development and homeostatic scaling of the expression of the transporters in functionally differentiated cultures may serve to control vesicular glutamate and GABA filling and adjust functional presynaptic excitatory/inhibitory balance. Unexpectedly, hyperexcitation in differentiated cultures triggers a striking increase in VGLUT2 mRNA and synaptic protein, whereas decreased excitation reduces levels. VGLUT2 mRNA and protein are expressed in subsets of VGLUT1-encoded neocortical neurons that we identify in primary cultures and in neocortex in situ and in vivo. After prolonged hyperexcitation, downregulation of VGLUT1/synaptophysin intensity ratios at most synapses is observed, whereas a subset of VGLUT1-containing boutons selectively increase the expression of VGLUT2. Bidirectional and opposite regulation of VGLUT1 and VGLUT2 by activity may serve as positive or negative feedback regulators for cortical synaptic transmission. Intracortical VGLUT1/VGLUT2 coexpressing neurons have the capacity to independently modulate the level of expression of either transporter at discrete synapses and therefore may serve as a plastic interface between subcortical thalamic input (VGLUT2) and cortical output (VGLUT1) neurons.
Project description:To better comprehend how synaptic scaling affects the neuronal transcriptome, we used the whole genome microarray expression profiling in hippocampal cultures treated with AMPARs and synaptic NMDARs antagonists for 9h and 26h, or under control conditions. Gene ontology enrichment analysis showed altered transcripts associated with synaptic signalling and synaptic plasticity classes, including transcripts of several proteins already associated with synaptic scaling mechanisms.
Project description:Synaptic scaling is a form of homeostatic plasticity which allows neurons to reduce their action potential firing rate in response to chronic alterations in neural activity. Synaptic scaling requires profound changes in gene expression, but the relative contribution of local and cell-wide mechanisms to synaptic scaling is controversial. Here we performed a comprehensive multi-omics characterization of the somatic and process compartments of primary rat hippocampal neurons during synaptic scaling. Thereby, we uncovered highly compartment-specific and correlated changes in the neuronal transcriptome and proteome. Specifically, we identified highly compartment-specific downregulation of crucial regulators of neuronal excitability and excitatory synapse structure. Motif analysis further suggests an important role for trans-acting post-transcriptional regulators, including RNA-binding proteins and microRNAs, in the local regulation of the corresponding mRNAs. Altogether, our study indicates that compartmentalized gene expression changes are widespread in synaptic scaling and might co-exist with neuron-wide mechanism to allow synaptic computation and homeostasis.
Project description:Neural circuits utilize a host of homeostatic plasticity mechanisms, including synaptic scaling, to maintain stability in circuits undergoing experience-dependent remodeling necessary for information processing. During synaptic scaling, compensatory adaptations in synaptic strength are induced after chronic manipulations in neuronal firing, but our understanding of this process is largely limited to its initial induction. How these homeostatic synaptic adaptations evolve when activity renormalizes and their impact on subsequent homeostatic compensation are both poorly understood. To examine these issues, we investigated whether a previous history of homeostatic scaling in networks of cultured hippocampal neurons altered their subsequent homeostatic responses to chronic activity manipulations. Unexpectedly, we found that a history of synaptic scaling strongly suppressed future scaling to the same, and even opposite, activity challenges. This history-dependent suppression was specific for future homeostatic compensation, as networks with a prior scaling history showed no deficits in the chemical induction of long-term potentiation (cLTP), a Hebbian form of synaptic plasticity. Hippocampal neurons with a prior scaling history exhibited normal engagement of activity-dependent signaling during subsequent activity challenges (as assessed by examination of the ERK/MAPK pathway) but demonstrated widespread alterations in activity-dependent transcriptional
Project description:Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra syndrome-associated protein, EHMT1, plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vivo or in vivo. These findings suggest that changes in chromatin state through H3K9me2 governs a repressive program to achieve synaptic scaling. 12 samples (4 conditions in biological triplicate), 3 wt, 3 wt tetradotoxin treated, 3 k.d., 3 k.d. tetradotoxin treated
Project description:Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra syndrome-associated protein, EHMT1, plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vivo or in vivo. These findings suggest that changes in chromatin state through H3K9me2 governs a repressive program to achieve synaptic scaling.
Project description:Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by blocking action potentials increases synaptic strength through an upregulation of surface AMPA receptors. Although this synaptic up-scaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 h of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Notably, Nptx1 induction is mediated by calcium influx through the T-type Voltage-Gated Calcium Channel, as well as two transcription factors, SRF and ELK1. Taken together, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed, to globally coordinate the increase in synaptic strength.