Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation
Ontology highlight
ABSTRACT: Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells with important homeostatic functions. However, their fate during and after severe episodes of brain inflammation and their relation to recruited monocyte-derived cells remain poorly understood. Here, we show that Trypanosoma brucei parasites invade the brain via its border regions, triggering a disruption of brain barriers and the recruitment of large numbers of monocytes. Fate-mapping combined with single-cell sequencing revealed the remarkable dynamics of resident macrophages, including microglia accumulation around the ventricular ependyma and an expansion of epiplexus cells. Resident macrophages were important for attracting peripheral immune cells and driving a pro-inflammatory response. However, recruited monocyte-derived macrophages reached higher cell densities and exhibited more transcriptional plasticity, adopting anti-microbial gene expression profiles not observed resident macrophages. Remarkably, recruited macrophages were short-lived and rapidly removed upon disease resolution, while activated resident macrophages progressively reverted towards a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Together our results reveal the diverging responses and dynamics of resident and recruited macrophages upon Trypanosome invasion of the brain.
ORGANISM(S): Mus musculus
PROVIDER: GSE212078 | GEO | 2022/08/26
REPOSITORIES: GEO
ACCESS DATA