Deletion of a state-specific PD-1 enhancer modulates exhausted T cell fate and function [ATAC-seq]
Ontology highlight
ABSTRACT: T cell exhaustion is a state of CD8+ T cell dysfunction elicited by chronic exposure to antigen and inflammation, arises in both cancer and chronic viral infection. The co-inhibitory receptor PD-1 plays a key role in mediating exhaustion, but complete ablation of PD-1 by gene knock-out leads to deeper functional deficits and poor T cell survival. We hypothesized that an intermediate level of PD-1 expression may confer an improved balance of exhausted CD8+ T cell functionality, so we deleted an exhaustion-associated enhancer of PD-1 which indeed resulted in a reduced expression level. We compared EnhDel, WT and PD-1 KO T cells using single-cell RNA-Seq and found that PD-1 KO but not EnhDel cells are strongly biased towards the terminally exhausted subset. EnhDel cells also uniquely enrich for effector-associated genes and gene signatures. However, all three genotypes (EnhDel, WT and PD-1 KO) exhibit a similar chromatin accessibility landscape by ATAC-Seq, controlling for exhausted subset. These data suggest that tuning of PD-1 expression may uniquely permit the maintenance of an “effector” transcriptional profile in exhausted CD8+ T cells.
Project description:T cell exhaustion is a state of CD8+ T cell dysfunction elicited by chronic exposure to antigen and inflammation, arises in both cancer and chronic viral infection. The co-inhibitory receptor PD-1 plays a key role in mediating exhaustion, but complete ablation of PD-1 by gene knock-out leads to deeper functional deficits and poor T cell survival. We hypothesized that an intermediate level of PD-1 expression may confer an improved balance of exhausted CD8+ T cell functionality, so we deleted an exhaustion-associated enhancer of PD-1 which indeed resulted in a reduced expression level. We compared EnhDel, WT and PD-1 KO T cells using single-cell RNA-Seq and found that PD-1 KO but not EnhDel cells are strongly biased towards the terminally exhausted subset. EnhDel cells also uniquely enrich for effector-associated genes and gene signatures. However, all three genotypes (EnhDel, WT and PD-1 KO) exhibit a similar chromatin accessibility landscape by ATAC-Seq, controlling for exhausted subset. These data suggest that tuning of PD-1 expression may uniquely permit the maintenance of an “effector” transcriptional profile in exhausted CD8+ T cells.
Project description:T cell exhaustion is a state of CD8+ T cell dysfunction elicited by chronic exposure to antigen and inflammation, arises in both cancer and chronic viral infection. The co-inhibitory receptor PD-1 plays a key role in mediating exhaustion, but complete ablation of PD-1 by gene knock-out leads to deeper functional deficits and poor T cell survival. We hypothesized that an intermediate level of PD-1 expression may confer an improved balance of exhausted CD8+ T cell functionality, so we deleted an exhaustion-associated enhancer of PD-1 which indeed resulted in a reduced expression level. We compared EnhDel, WT and PD-1 KO T cells using single-cell RNA-Seq and found that PD-1 KO but not EnhDel cells are strongly biased towards the terminally exhausted subset. EnhDel cells also uniquely enrich for effector-associated genes and gene signatures. However, all three genotypes (EnhDel, WT and PD-1 KO) exhibit a similar chromatin accessibility landscape by ATAC-Seq, controlling for exhausted subset. These data suggest that tuning of PD-1 expression may uniquely permit the maintenance of an “effector” transcriptional profile in exhausted CD8+ T cells.
Project description:Chronic viral infections are characterized by a state of CD8 T cell dysfunction termed exhaustion. A better understanding of the mechanisms that regulate CD8 T cell responses during chronic infection is required to improve immunotherapies that restore function in exhausted CD8 T cells. Here we identify a novel population of virus-specific CD8 T cells with a T follicular helper (Tfh)-like signature in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). These Tfh-like CD8 T cells expressed the programmed cell death-1 (PD-1) inhibitory receptor but at the same time also expressed co-stimulatory molecules and had a gene signature that was related to CD8 T cell memory precursor cells and hematopoietic stem cells (HSC). These Tfh-like CD8 T cells acted as stem cells during chronic infection undergoing self-renewal and also differentiating into the terminally exhausted CD8 T cells that were present in both lymphoid and non-lymphoid tissues. The Tfh-like CD8 T cells were found only in lymphoid tissues and resided predominantly in the T cell zones along with naïve CD8 T cells. Interestingly, the proliferative burst after PD-1 blockade came almost exclusively from this Tfh-like CD8 T cell subset. Importantly, the transcription factor TCF1 played a cell intrinsic and essential role in the generation of Tfh-like CD8 T cells. Taken together, our study identifies Tfh-like CD8 T cells as the critical subset for maintaining the pool of virus-specific CD8 T cells during chronic infection and as the cells that proliferate after PD-1 blockade. These findings provide a better understanding of T cell exhaustion and have implications towards optimizing PD-1 directed immunotherapy. 8 samples isolated from CD8 T-cells in LCMV clone 13 GK1.5 infected mice (2 naïve, 3 CXCR5+Tim3-, 3 CXCR5-Tim3+) cells were analyzed
Project description:T cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that PD-1 regulates T cell dysfunction during chronic LCMV infection in mice and PD-1 high cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, HCV and HBV. However, it is not known if PD-1 high cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function and gene expression profiles of PD-1 high versus PD-1 low CD8 T cells in the peripheral blood of healthy human adults as following: 1) The percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans and PD-1 was expressed by the memory CD8 T cells. 2) PD-1 high CD8 T cells in healthy humans did not significantly correlated with the PD-1 high exhausted gene signature of HIV specific human CD8 T cells or chronic LCMV specific CD8 T cells from mice. 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults. 4) PD-1 was expressed by the effector memory (TEM) compared to ‘terminally differentiated effector’ (TEMRA) CD8 T cells. 5) Finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed. We used highly purified PD-1 high and PD-1 low from six healthy adult individuals and naive CD8 T cell populations from four of those individuals for gene expression studies
Project description:Persistent Ag induces a dysfunctional CD8 T cell state known as "exhaustion" characterized by PD-1 expression. Nevertheless, exhausted CD8 T cells retain functionality through continued differentiation of progenitor into effector cells. However, it remains ill-defined how CD8 T cell effector responses are sustained in situ. In this study, we show using the mouse chronic lymphocytic choriomeningitis virus infection model that CX3CR1+ CD8 T cells contain a T-bet-dependent TIM3-PD-1lo subpopulation that is distinct from the TIM3+CX3CR1+PD-1+ proliferative effector subset. The TIM3-CX3CR1+ cells are quiescent and express a low but significant level of the transcription factor TCF-1, demonstrating similarity to TCF-1hi progenitor CD8 T cells. Furthermore, following the resolution of lymphocytic choriomeningitis virus viremia, a substantial proportion of TCF-1+ memory-like CD8 T cells show evidence of CX3CR1 expression during the chronic phase of the infection. Our results suggest a subset of the CX3CR1+ exhausted population demonstrates progenitor-like features that support the generation of the CX3CR1+ effector pool from the TCF-1hi progenitors and contribute to the memory-like pool following the resolution of viremia.
Project description:CD8+ T cells in chronic viral infections like HIV develop functional defects such as loss of IL-2 secretion and decreased proliferative potential that are collectively termed exhaustion1. Exhausted T cells express increased levels of multiple inhibitory receptors, such as Programmed Death 1 (PD-1). PD-1 inhibition contributes to impaired virus-specific T cell function in chronic infection because antibody-mediated blockade of its ligand, Programmed Death Ligand 1 (PD-L1) is sufficient to improve T cell function and reduce viral replication in animal models. Reversing PD-1 inhibition is therefore an attractive therapeutic target, but the cellular mechanisms by which PD-1 ligation results in T cell inhibition are not fully understood. PD-1 is thought to limit T cell activation by attenuating T cell receptor (TCR) signaling. It is not known whether PD-1 ligation also acts by upregulating genes in exhausted T cells that impair their function. Here, we analyzed gene-expression profiles from HIV-specific CD8+ T cells in patients with HIV and show that PD-1 coordinately upregulates a program of genes in exhausted CD8+ T cells from humans and mice. This program includes upregulation of basic leucine transcription factor, ATF-like (BATF), a transcription factor in the AP-1 family. Enforced expression of BATF was sufficient to impair T cell proliferation and cytokine secretion, while BATF knockdown reduced PD-1 inhibition. Silencing BATF in CD4+ and CD8+ T cells from chronic viremic patients rescued HIV-specific T cell function. Thus inhibitory receptors can cause T cell exhaustion by upregulating genes â such as BATF â that inhibit T cell function. We sorted HIV-specific CD8+ T cells from 18 progressors and 24 controllers, cohorts with a two-log difference in mean viral load
Project description:CD8+ T cells in chronic viral infections like HIV develop functional defects such as loss of IL-2 secretion and decreased proliferative potential that are collectively termed exhaustion1. Exhausted T cells express increased levels of multiple inhibitory receptors, such as Programmed Death 1 (PD-1). PD-1 inhibition contributes to impaired virus-specific T cell function in chronic infection because antibody-mediated blockade of its ligand, Programmed Death Ligand 1 (PD-L1) is sufficient to improve T cell function and reduce viral replication in animal models. Reversing PD-1 inhibition is therefore an attractive therapeutic target, but the cellular mechanisms by which PD-1 ligation results in T cell inhibition are not fully understood. PD-1 is thought to limit T cell activation by attenuating T cell receptor (TCR) signaling. It is not known whether PD-1 ligation also acts by upregulating genes in exhausted T cells that impair their function. Here, we analyzed gene-expression profiles from HIV-specific CD8+ T cells in patients with HIV and show that PD-1 coordinately upregulates a program of genes in exhausted CD8+ T cells from humans and mice. This program includes upregulation of basic leucine transcription factor, ATF-like (BATF), a transcription factor in the AP-1 family. Enforced expression of BATF was sufficient to impair T cell proliferation and cytokine secretion, while BATF knockdown reduced PD-1 inhibition. Silencing BATF in CD4+ and CD8+ T cells from chronic viremic patients rescued HIV-specific T cell function. Thus inhibitory receptors can cause T cell exhaustion by upregulating genes â such as BATF â that inhibit T cell function. PD-1 expressing Jurkat cells were cultured for 18 hours with beads coated with antibodies to CD3 and CD28, with our without an antibody to PD-1.
Project description:Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion. CD8+ T cells from subjects with HCV infection were sorted and pelleted and re-suspended in TRIzol (Invitrogen). RNA extraction was performed using the RNAdvance Tissue Isolation kit (Agencourt). Concentrations of total RNA were determined with a Nanodrop spectrophotometer or Ribogreen RNA quantification kits (Molecular Probes/Invitrogen). RNA purity was determined by Bioanalyzer 2100 traces (Agilent Technologies). Total RNA was amplified with the WT-Ovation Pico RNA Amplification system (NuGEN) according to the manufacturer's instructions. After fragmentation and biotinylation, cDNA was hybridized to HG-U133A 2.0 microarrays (Affymetrix).
Project description:TGFb signaling is a major pathway associated with poor clinical outcome in patients with
advanced metastatic cancers and non-response to immune checkpoint blockade, particularly in the immune-excluded tumor phenotype. While previous pre-clinical studies demonstrated that converting tumors from an excluded to an inflamed phenotype and curative anti-tumor immunity require attenuation of both PD-L1 and TGFb signaling, the underlying cellular mechanisms remain unclear. Recent studies suggest that stem cell-like CD8 T cells (TSCL) can differentiate into non-exhausted CD8 T effector cells that drive durable anti-tumor immunity. Here, we show that TGFb and PD-L1 restrain TSCL expansion as well as replacement of progenitor exhausted and dysfunctional CD8 T cells with non-exhausted IFNghi CD8 T effector cells in the tumor microenvironment (TME). Blockade of TGFb and PD-L1 generated IFNghi CD8 T effector cells with enhanced motility, enabling both their accumulation in the TME and increased interaction with other cell types. Ensuing IFNg signaling markedly transformed myeloid, stromal, and tumor niches to yield a broadly immune-supportive ecosystem. Blocking IFNg completely abolished the effect of anti-PD-L1/ TGFb combination therapy. Our data suggest that TGFb works in concert with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells with fresh CD8
T effector cells, thereby maintaining the CD8 T cell compartment in a dysfunctional state.
Project description:During acute viral infections, naïve CD8+ T cells differentiate into effector CD8+ T cells and, after viral control, into memory CD8+ T cells. Memory CD8+ T cells are highly functional, proliferate rapidly upon reinfection and persist long-term without antigen. In contrast, during chronic infections, CD8+ T cells become “exhausted” and have poor effector function, express multiple inhibitory receptors, possess low proliferative capacity, and cannot persist without antigen. Exhuasted CD8+ T cells can be further segregated by their expression of the inhibitory cell surface receptor PD-1. We performed transcriptional profiling on both PD-1 High and PD-1 Intermediate H2-Db GP33-specific CD8+ T cells. H2-Db GP33-specific CD8+ T cells were sorted from C57BL/6 mice 30 days p.i. with LCMV clone 13. These cells were then segregated by their expression of the inhibitory cell surface receptor PD-1 into PD-1 High and PD-1 Intermediate subpopulations. We performed transcriptional profiling on these subpopulations.