Glycosylation of queuosine in tRNAs contributes to optimal translation and post-embryonic growth in vertebrates
Ontology highlight
ABSTRACT: Post-transcriptional modification of tRNAs is critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present at the first position of anticodons of several tRNA species. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galactosyl-queuosine (galQ) and mannosyl-queuosine (manQ), respectively. However, the biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, queuosine-tRNA galactosyltransferase (QTGAL) and queuosine-tRNA mannosyltransferase (QTMAN), and successfully reconstituted galQ and manQ formation on the respective tRNAs in the presence of nucleotide diphosphate sugars. Ribosome profiling analyses of human knockout (KO) cells of QTGAL and QTMAN revealed that Q-glycosylation slowed down elongation at the cognate codons, UAC and GAC (GAU), respectively. Furthermore, protein aggregates were significantly increased in both KO cell lines, indicating that Q-glycosylation contributes to proteostasis of nascent proteins. We determined atomic structures of human cytoplasmic tRNAs for Try and Asp bound to the ribosome A-site, providing the molecular basis of codon recognition regulated by galQ and manQ. Furthermore, zebrafish qtgal and qtman KO lines displayed shortened body length, suggesting Q-glycosylation is required for post-embryonic growth in vertebrates. These findings demonstrate that Q-glycosylation modulates codon-specific translation to optimize the decoding speed in protein synthesis, thereby maintaining correct folding of nascent proteins, proteome integrity, and normal growth of vertebrates.
Project description:Protein translation depends on mRNA-specific initiation, elongation, and termination rates. While the regulation of ribosome elongation is well studied in bacteria and yeast, less is known in higher eukaryotes. Here, we combined ribosome and tRNA profiling to investigate the relations between ribosome elongation rates, (aminoacyl-) tRNA levels and codon usage in mammals. We modeled codon-specific ribosome dwell times and translation fluxes from ribosome profiling, considering pair-interactions between ribosome sites. In mouse liver, the model revealed site and codon specific dwell times, as well as codon pair-interactions clustering by amino acids. While translation fluxes varied significantly across diurnal time and feeding regimen, codon dwell times were highly stable, and conserved in human. Fasting had no effect on codon dwell times in mouse liver. Profiling of total and aminoacylated tRNAs revealed highly heterogeneous levels with specific isoacceptor patterns and a correlation with codon usage. tRNAs for isoleucine, asparagine, aspartate and arginine were lowly loaded and conserved in fasted mice. Finally, codons with low levels of charged tRNAs and high codon usage relative to tRNA abundance exhibited long dwell times. Together, these analyses pave the way towards understanding the complex relation between tRNA loading, codon usage and ribosome dwell times in mammals.
Project description:Protein translation depends on mRNA-specific initiation, elongation, and termination rates. While the regulation of ribosome elongation is well studied in bacteria and yeast, less is known in higher eukaryotes. Here, we combined ribosome and tRNA profiling to investigate the relations between ribosome elongation rates, (aminoacyl-) tRNA levels and codon usage in mammals. We modeled codon-specific ribosome dwell times and translation fluxes from ribosome profiling, considering pair-interactions between ribosome sites. In mouse liver, the model revealed site and codon specific dwell times, as well as codon pair-interactions clustering by amino acids. While translation fluxes varied significantly across diurnal time and feeding regimen, codon dwell times were highly stable, and conserved in human. Fasting had no effect on codon dwell times in mouse liver. Profiling of total and aminoacylated tRNAs revealed highly heterogeneous levels with specific isoacceptor patterns and a correlation with codon usage. tRNAs for isoleucine, asparagine, aspartate and arginine were lowly loaded and conserved in fasted mice. Finally, codons with low levels of charged tRNAs and high codon usage relative to tRNA abundance exhibited long dwell times. Together, these analyses pave the way towards understanding the complex relation between tRNA loading, codon usage and ribosome dwell times in mammals.
Project description:Queuosine (Q) is a conserved tRNA modification at the wobble anticodon position of tRNAs that read the codons of amino acids Tyr, His, Asn, and Asp. Q-modification in tRNA plays important roles in the regulation of translation efficiency and fidelity. Queuosine tRNA modification is synthesized de novo in bacteria, whereas the substrate for Q-modification in tRNA in mammals is queuine, the catabolic product of the Q-base of gut bacteria. This gut microbiome dependent tRNA modification may play pivotal roles in translational regulation in different cellular contexts, but extensive studies of Q-modification biology are hindered by the lack of high throughput sequencing methods for its detection and quantitation. Here, we describe a periodate-treatment method of biological RNA samples that enables single base resolution profiling of Q-modification in tRNAs by Nextgen sequencing. Periodate oxidizes the Q-base, which results in specific deletion signatures in the RNA-seq data. Unexpectedly, we found that periodate-treatment also enables the detection of several 2-thio-modifications including τm5s2U, mcm5s2U, cmnm5s2U, and s2C by sequencing in human and E. coli tRNA. We term this method Periodate-dependent analysis of queuosine and thio modification sequencing (PAQS-seq). We assess Q- and 2-thio-modifications at the tRNA isodecoder level, and 2-thio modification changes in stress response. PAQS-seq should be widely applicable in the biological studies of Q- and 2-thio-modifications in mammalian and microbial tRNAs.
Project description:Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Yeast cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress and accumulate aggregates of endogenous proteins with key cellular functions. Moreover, these cells are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA anticodon modifications in maintaining proteome integrity. Ribosome profiling of wild-type and tRNA modification-deficient yeast and nematodes. Yeast samples were generated in various growth conditions (rich medium versus stress induced by treatment with diamide or rapamycin) and paired mRNA-Seq was performed on a subset of samples. Dataset contains three biological replicates for yeast samples and two biological replicates for nematode samples.
Project description:Regulation of protein translation is a key feature of many biological processes. Global protein translation as well as translation at the codon level can be regulated by RNA modifications. These modifications are particularly enriched in tRNAs, where they represent an additional regulatory layer on top of the primary RNA sequence. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the gut microbiota and absorbed in the intestine. We show here that reduced queuine supply results in a strong reduction of tRNA queuosinylation in various cultured human cell lines and mouse tissues. In addition, Dnmt2-dependent tRNA methylation is dynamically modulated by the presence or absence of queuine. Ribosome profiling showed that nutritionally determined queuosine-tRNA (Q-tRNA) levels control the translation speed of Q-tRNA decoded codons. Dysregulation of translation resulted in pronounced endoplasmic reticulum stress and activation of the unfolded protein response, which could be rescued by the addition of queuine. Together, these findings establish a direct link between nutrient availability and the decoding of the transcriptome, thus providing a new perspective in our understanding of translational regulation.
Project description:Eukaryotic transfer RNAs (tRNA) contain on average 13 modifications that perform a wide range of roles in translation and in the generation of tRNA fragments that regulate gene expression. Queuosine (Q) modification occurs in the wobble anticodon position of tRNAs for amino acids His, Asn, Tyr, and Asp. In eukaryotes, Q modification is fully dependent on diet or on gut microbiome in multi-cellular organisms. Despite decades of study, cellular roles of Q modification remain to be fully elucidated. Here we show that in human cells, Q modification specifically protects its cognate tRNAHis and tRNAAsn against cleavage by ribonucleases. We generated cell lines that contain completely depleted or fully Q-modified tRNAs. Using these resources, we found that Q modification significantly reduces angiogenin cleavage of its cognate tRNAs in vitro. Q modification does not change the cellular abundance of the cognate full-length tRNAs, but alters the cellular content of their fragments in vivo in the absence and presence of stress. Our results provide a new biological aspect of Q modification and a mechanism of how Q modification alters small RNA pool in human cells.
Project description:Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Yeast cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress and accumulate aggregates of endogenous proteins with key cellular functions. Moreover, these cells are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA anticodon modifications in maintaining proteome integrity.
Project description:In the ribosome complex, tRNA is a critical element of mRNA translation. We reported a new technology for profiling ribosome-embedded tRNAs and their modifications. With the method, we generated a comprehensive survey of the quanity and quality of intra-ribosomal tRNAs (Ribo-tRNA-seq). Ribo-tRNA-seq can provide new insights on translation control mechanism in diverse biological contexts.
Project description:Accurate translation of mRNAs into functional proteins is a fundamental process in all living organisms. In bacteria, in the early stage of translation elongation, peptidyl-tRNAs (pep-tRNAs) with short nascent chains frequently dissociate from the ribosome (pep-tRNA drop-off). The dissociated pep-tRNAs are deacylated and recycled by peptidyl-tRNA hydrolase (PTH), which is an essential enzyme in bacteria. Here, we establish a highly sensitive method for direct profiling of pep-tRNAs using RNA isolation method and mass spectrometry. We isolated each tRNA species with peptide from Escherichia coli pthts cells using reciprocal circulating chromatography and precisely analyzed their nascent peptides. As a result, we successfully detected 703 peptides consisted of 402 cognate peptides and 301 non-cognate peptides with single amino-acid substitution. Detailed analysis of individual pep-tRNAs revealed that most of the substitutions in the miscoded peptides take place at the C-terminal drop-off site. We further examined this observation using a reporter construct and found that the non-cognate pep-tRNAs produced by mistranslation rarely participate in the next round of elongation but dissociate from the ribosome, suggesting that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.