Maternal influences on the transmission of leukocyte gene expression profiles in population samples (mother and child)
Ontology highlight
ABSTRACT: This study contrasts the expression profiles of peripheral blood leukocytes from third trimester pregnant mothers, with cord blood leukocytes from their newborn children. It is a companion to (GSE21311). After normalization for RNA integrity, major principal components of the variation were found to distinguish individuals. Transmission of gene expression profiles from mother to child was documented, along with differences between gestational diabetic, obese, and normal weight mothers and their children.
Project description:This study contrasts the expression profiles of peripheral blood leukocytes from third trimester pregnant mothers, with cord blood leukocytes from their newborn children. It is a companion to (GSE21311). After normalization for RNA integrity, major principal components of the variation were found to distinguish individuals. Transmission of gene expression profiles from mother to child was documented, along with differences between gestational diabetic, obese, and normal weight mothers and their children. 56 individulas (Brisbane, Australia) were sampled for the mother-newborn study, under informed consent. 19 mothers sample were collected in the last month of pregnancy (between 30th and 36th week of pregnancy) and 37 cord blood samples were obtained at birth from newborn babies. Mothers having BMI values over 30 before pregnancy were classified as obese. From the 37 newborn babies, 10 were born to obese mothers, 8 to gestational diabetic mothers (with a wide range of body mass indices), and 19 to normal-weight mothers. There were 16 mother-newborn pairs in the dataset. RNA from each was hybridized to an Illumina HT12 array.
Project description:This is a companion study to (GSE21342). Peripheral blood leukocyte samples were obtained with consent from 100 red cross blood donors sampled cross-sectionally across the city of Brisbane, Australia. After correction for RNA integrity values, individuals fall into major profiles of expression variation suggesting environmental and cultural influences on immune gene expression.
Project description:This is a companion study to (GSE21342). Peripheral blood leukocyte samples were obtained with consent from 100 red cross blood donors sampled cross-sectionally across the city of Brisbane, Australia. After correction for RNA integrity values, individuals fall into major profiles of expression variation suggesting environmental and cultural influences on immune gene expression. 100 individuals, 50 men and 50 women, were sampled with permission of the Red Cross Society of Australia and under informed consent. The age of individulas were between 18 and 68 (mean 44). BMI ranged from 17.7 to 51.3 with a mean of 26.6. Collection was carried out by EM at mobile Red Cross vans at 10 locations (Bellbowrie, Capalaba, Dayboro, Eagle Farm, Kenmore, Mount Ommaney, South Brisbane, St Lucia, Virginia, and Woolloongabba) distributed across the city.
Project description:Glucocorticoid resistance complicates the treatment of ~20% of children with nephrotic syndrome, yet the molecular basis for resistance remains unclear. We generated the transcriptome profile by RNA sequencing of peripheral blood leukocytes from children obtained both at initial nephrotic syndrome presentation and after ~7 weeks of glucocorticoid therapy to identify genes or a gene panel able to differentiate steroid sensitive from steroid resistant nephrotic syndrome. RNA -seq analysis was followed by in-silico algorithm-based approaches and subsequent biochemical analyses on relevant candidate gene with important roles in podocyte and glomerular pathophysiology, using both patient samples and experimental models of nephrotic syndrome and podocyte injury.
Project description:Infections with herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2), both alpha herpesviruses, are highly prevalent worldwide. Both HSV types commonly cause genital infection, which, when acquired or reactivated during pregnancy, carries with it the risk of transmission to the fetus or neonate. Women who acquire primary or first-episode genital herpes during pregnancy are at greater risk for transmitting the infection than are women with recurrent genital herpes. Because viral infection and reactivation are frequently asymptomatic, many affected women are unaware of their infection and risk of transmission to their infants. Neonatal HSV infection can have devastating long-term consequences, especially when the central nervous system (CNS) is involved. Treatment of affected neonates with intravenous acyclovir has improved outcomes but there is room for further improvement, especially in regard to CNS disease. Working with pregnant women to prevent mother-to-child transmission of HSV is an important component in reducing the overall disease burden of neonatal HSV infections.
Project description:Mother-to-child transmission (MTCT) of Human T-cell lymphotropic virus type 1 (HTLV-1) causes lifelong infection. At least 5-10 million individuals worldwide are currently living with HTLV-1. Studies of regional variation are required to better understand the contribution of MTCT to the global burden of infection. Although most infected individuals remain asymptomatic ∼10% develop high morbidity, high mortality disease. Infection early in life is associated with a higher risk of disease development. Adult T-cell leukemia (ATL), which is caused by HTLV-1 and has a median survival of 8 months is linked to MTCT, indeed evidence of ATL following infection as an adult is sparse. Infective dermatitis also only occurs following neonatal infection. Whilst HTLV-1-associated myelopathy (HAM) follows sexual and iatrogenic infection approximately 30% of patients presenting with HAM/TSP acquired the infection through their mothers. HAM/TSP is a disabling neurodegenerative disease that greatly impact patient's quality of life. To date there is no cure for HTLV-1 infection other than bone marrow transplantation for ATL nor any measure to prevent HTLV-1 associated diseases in an infected individual. In this context, prevention of MTCT is expected to contribute disproportionately to reducing both the incidence of HTLV-1 and the burden of HTLV-1 associated diseases. In order to successfully avoid HTLV-1 MTCT, it is important to understand all the variables involved in this route of infection. Questions remain regarding frequency and risk factors for in utero peri-partum transmission whilst little is known about the efficacy of pre-labor cesarean section to reduce these infections. Understanding the contribution of peripartum infection to the burden of disease will be important to gauge the risk-benefit of interventions in this area. Few studies have examined the impact of HTLV-1 infection on fertility or pregnancy outcomes nor the susceptibility of the mother to infection during pregnancy and lactation. Whilst breast-feeding is strongly associated with transmission and avoidance of breast-feeding a proven intervention little is known about the mechanism of transmission from the breast milk to the infant and there have been no clinical trials of antiretroviral therapy (ARV) to prevent this route of transmission.
Project description:Passage through the birth canal and consequent exposure to the mother's microbiota is considered to represent the initiating event for microbial colonization of the gastrointestinal tract of the newborn. However, a precise evaluation of such suspected vertical microbiota transmission has yet to be performed. Here, we evaluated the microbiomes of four sample sets, each consisting of a mother's fecal and milk samples and the corresponding infant's fecal sample, by means of amplicon-based profiling supported by shotgun metagenomics data for two key samples. Notably, targeted genome reconstruction from microbiome data revealed vertical transmission of a Bifidobacterium breve strain and a Bifidobacterium longum subsp. longum strain from mother to infant, a notion confirmed by strain isolation and genome sequencing. Furthermore, PCR analyses targeting unique genes from these two strains highlighted their persistence in the infant gut at 6 months. Thus, this study demonstrates the existence of specific bifidobacterial strains that are common to mother and child and thus indicative of vertical transmission and that are maintained in the infant for at least relatively short time spans.
Project description:This study examined HIV superinfection in HIV-infected women postpartum, and its association with mother-to-child transmission (MTCT).Plasma samples were obtained from HIV-infected women who transmitted HIV to their infants after 6 weeks of age (transmitters, n?=?91) and HIV-infected women who did not transmit HIV to their infants (nontransmitters, n?=?91). These women were originally enrolled in a randomized trial for prevention of MTCT of HIV in Malawi (Post-Exposure Prophylaxis of Infants trial in Malawi).Two HIV genomic regions (p24 and gp41) were analyzed by next-generation sequencing for HIV superinfection. HIV superinfection was established if the follow-up sample contained a new, phylogenetically distinct viral population. HIV superinfection and transmission risk were examined by multiple logistic regression, adjusted for Post-Exposure Prophylaxis of Infants study arm, baseline viral load, baseline CD4 cell count, time to resumption of sex, and breastfeeding duration.Transmitters had lower baseline CD4 cell counts (P?=?0.001) and higher viral loads (P?<?0.0001) compared with nontransmitters. There were five cases of superinfection among transmitters (rate of superinfection?=?4.7/100 person-years) compared with five cases among the nontransmitters (rate of superinfection?=?4.4/100 person-years; P?=?0.78). HIV superinfection was not associated with increased risk of postnatal MTCT of HIV after controlling for maternal age, baseline viral load, and CD4 cell count (adjusted odds ratio?=?2.32, P?=?0.30). Longer breastfeeding duration was independently associated with a lower risk of HIV superinfection after controlling for study arm and baseline viral load (P?=?0.05).There was a significant level of HIV superinfection in women postpartum, but this was not associated with an increased risk of MTCT via breastfeeding.
Project description:Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (nc886/VTRNA2-1), which is maternally imprinted in ?75% of humans. This is unlike other imprinted genes, which demonstrate monoallelic methylation in 100% of individuals. The DMR includes a CTCF binding site on the centromeric side defining the DMR boundary and is flanked by a CTCF binding site on the telomeric side. The centromeric CTCF binding site contains an A/C polymorphism (rs2346018); the C allele is associated with less imprinting. The frequency of imprinting of the nc886 DMR in infants was linked to at least two nongenetic factors, maternal age at delivery and season of conception. In a separate cohort, nc886 imprinting was associated with lower body mass index in children at 5 y of age. Thus, we propose that the imprinting status of the nc886 DMR is "tunable" in that it is associated with maternal haplotype and prenatal environment. This provides a potential mechanism for transmitting information, with phenotypic consequences, from mother to child.