High-resolution Nanopore methylome-maps reveal random hyper-methylation at CpG-poor regions as driver of chemoresistance in leukemias.[RNA-Seq]
Ontology highlight
ABSTRACT: Aberrant DNA-methylation at CpG dinucleotides is a hallmark of cancer and is associated with the emergence of resistance to anti-cancer treatment, though molecular mechanisms and biological signifi- cance remain elusive. Genome-scale methylation maps by currently used methods are based on chemical modification of DNA and are best suited for analyses of methylation at CpG-rich regions (CpG islands). We report the first high-coverage whole-genome map in cancer using the long-read nanopore technol- ogy, which allows simultaneous DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, af- ter chemotherapy. Long-read sequencing coupled to a novel computational method allowed definition of differential methylation at unprecedented resolution (> 99% CpGs), extending analyses of CpG is- lands to sparse CpGs, which represent half of all differentially-methylated regions. We showed that the
ORGANISM(S): Homo sapiens
PROVIDER: GSE213684 | GEO | 2023/04/12
REPOSITORIES: GEO
ACCESS DATA