Nucleotide level linkage of transcriptional elongation and polyadenylation
Ontology highlight
ABSTRACT: Alternative polyadenylation yields many mRNA isoforms whose 3’ termini occur disproportionately in clusters within 3’ UTRs. Profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. In yeast, upstream and downstream shifts within isoform clusters occur steadily at the nucleotide level. In contrast, changes from one isoform to the next are much smaller between clusters, even when the distances between them are relatively large. Pol II occupancy increases just downstream of the most speed-sensitive poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that 1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, 2) poly(A) site clusters are linked to the local elongation rate and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, 3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and 4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.
ORGANISM(S): Homo sapiens
PROVIDER: GSE214095 | GEO | 2022/11/28
REPOSITORIES: GEO
ACCESS DATA