Project description:MDA5 is an innate immune RNA sensor that detects a range of viruses. MDA5’s RNA agonists are not well defined. We used individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) to study its ligands. Surprisingly, upon infection with SARS-CoV-2 or encephalomyocarditis virus (EMCV), MDA5 bound overwhelmingly to cellular RNAs. Many binding sites were intronic and proximal to Alu elements. MDA5-bound RNA was enriched in Poly(A) and Poly(U) motifs, some of which may form double-stranded RNA. In EMCV-infected cells, cytoplasmic levels of intron-containing unspliced transcripts were increased, suggesting dysregulation of splicing. Concomitantly, MDA5 iCLIP peaks were enriched in introns accumulating in the cytoplasm of infected cells. Moreover, rescue of splicing abrogated MDA5 activation. Finally, depletion of viral RNA from RNA extracted from infected cells did not diminish its MDA5-stimulatory potential. Taken together, MDA5 surveys RNA processing fidelity and detects splicing perturbation during infection, establishing a paradigm of innate immune ‘guarding’ for RNA sensors.
Project description:MDA5 is an innate immune RNA sensor that detects a range of viruses. MDA5’s RNA agonists are not well defined. We used individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) to study its ligands. Surprisingly, upon infection with SARS-CoV-2 or encephalomyocarditis virus (EMCV), MDA5 bound overwhelmingly to cellular RNAs. Many binding sites were intronic and proximal to Alu elements. MDA5-bound RNA was enriched in Poly(A) and Poly(U) motifs, some of which may form double-stranded RNA. In EMCV-infected cells, cytoplasmic levels of intron-containing unspliced transcripts were increased, suggesting dysregulation of splicing. Concomitantly, MDA5 iCLIP peaks were enriched in introns accumulating in the cytoplasm of infected cells. Moreover, rescue of splicing abrogated MDA5 activation. Finally, depletion of viral RNA from RNA extracted from infected cells did not diminish its MDA5-stimulatory potential. Taken together, MDA5 surveys RNA processing fidelity and detects splicing perturbation during infection, establishing a paradigm of innate immune ‘guarding’ for RNA sensors.
Project description:Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons' physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.