ID1 and CEBPA coordinate epidermal progenitor cell
Ontology highlight
ABSTRACT: The regulatory circuits that coordinate epidermal differentiation during development are still not fully understood. Here we report that the transcriptional regulator ID1 is enriched in basal epidermal progenitor cells and find ID1 expression to be diminished upon differentiation. In utero silencing of Id1 impairs progenitor cell proliferation, leads to precocious delamination of targeted progenitor cells and enables differentiated keratinocytes to retain progenitor markers and characteristics. Transcriptional profiling suggests ID1 acts by mediating adhesion to the basement membrane while inhibiting spinous layer differentiation. Co-immunoprecipitation reveals ID1 binding to transcriptional regulators of the class I bHLH family. We localize bHLH Tcf3, Tcf4 and Tcf12 to epidermal progenitor cells during epidermal stratification and established TCF3 as a downstream effector of ID1-mediated epidermal proliferation. Finally, we identify crosstalk between CEBPA, a known mediator of epidermal differentiation, and Id1 and demonstrate that CEBPA antagonizes BMP-induced activation of Id1. Our work establishes ID1 as a key coordinator of epidermal development, acting to balance progenitor proliferation with differentiation and unveils how functional crosstalk between CEBPA and Id1 orchestrates epidermal lineage progression.
Project description:Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. We here explored pre-B-cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-Seq analysis uncovered PBX1 binding to a wide range of different genes. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass-spectrometry. Spatial transcriptomics revealed distinct temporal expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3, TCF4 and TCF12. RNA-seq upon Pbx1, Tcf3 and Tcf4 knockdown identified proliferation and differentiation associated genes as shared targets. Neuronal differentiation was reduced upon depletion of either factor, suggesting functional cooperation between PBX1 and TCF3/4. Notably, while physiological PBX1-TCF interactions have not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre B-cell line expressing TCF3 but lacking PBX1, upregulated leukemogenic genes including BLK and NOTCH3, arguing that functional PBX1-TCF cooperation likely extends to hematopoietic contexts. Our study hence uncovers a PBX1-TCF module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with implications for leukemia etiology.
Project description:TCF3 belongs to E protein family and has the function of transcription factor. TCF3 can directly interact with HLH family proteins ID1 and ID3 to play biological functions. ID1 and ID3 do not have the ability to directly bind to DNA and need to be regulated by TCF3. We found changes in pluripotency in ID1 and ID3 double knockout lines of human ESC, so we suspected that ID1 / 3 played a regulatory role through TCF3. Therefore, TCF3 ChIP-seq was done in WT and KO lines, hoping to find the downstream genes regulated by ID1 / 3 through TCF3, and then regulate hESC pluripotency through these genes.
Project description:Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. Here we explored pre-B cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-Seq analysis uncovered PBX1 binding to a wide range of different sites. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass spectrometry. Spatial transcriptomics revealed distinct temporal expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3, TCF4 and TCF12. RNA-seq upon Pbx1, Tcf3 and Tcf4 knockdown identified proliferation- and differentiation associated genes as shared targets. Neuronal differentiation was reduced upon depletion of either factor, suggesting functional cooperation between PBX1 and TCF3/4. Notably, while physiological PBX1-TCF interactions have not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre-B cell line expressing TCF3 but lacking PBX1, upregulated leukemogenic genes including BLK and NOTCH3, arguing that functional PBX1-TCF cooperation likely extends to hematopoietic contexts. Our study hence uncovers a PBX1-TCF module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with implications for leukemia etiology.
Project description:Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. Here we explored pre-B cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-Seq analysis uncovered PBX1 binding to a wide range of different sites. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass spectrometry. Spatial transcriptomics revealed distinct temporal expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3, TCF4 and TCF12. RNA-seq upon Pbx1, Tcf3 and Tcf4 knockdown identified proliferation- and differentiation associated genes as shared targets. Neuronal differentiation was reduced upon depletion of either factor, suggesting functional cooperation between PBX1 and TCF3/4. Notably, while physiological PBX1-TCF interactions have not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre-B cell line expressing TCF3 but lacking PBX1, upregulated leukemogenic genes including BLK and NOTCH3, arguing that functional PBX1-TCF cooperation likely extends to hematopoietic contexts. Our study hence uncovers a PBX1-TCF module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with implications for leukemia etiology.
Project description:Our knowledge of transcriptional heterogeneities in epithelial stem/progenitor cell compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive wound healing. Previous studies have probed basal cell heterogeneity in stem/progenitor potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. Using single-cell RNA-sequencing coupled with RNAScope and fluorescence lifetime imaging, we identify three non-proliferative and one proliferative basal cell transcriptional states in homeostatic skin that differ in metabolic preference and become spatially partitioned during wound re-epithelialization. Pseudotemporal trajectory and RNA velocity analyses produce a quasi-linear differentiation hierarchy where basal cells progress from Col17a1high/Trp63high state to early response state, proliferate at the juncture of these two states, or become growth arrested before differentiating into spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous interconversions at multiple basal states. Our study provides a systematic view of epidermal cellular dynamics supporting a revised “hierarchical-lineage” model of homeostasis.
Project description:Progenitor cells at the basal layer of skin epidermis play an essential role in maintaining tissue homeostasis and enhancing wound repair in skin. The proliferation, differentiation, and cell death of epidermal progenitor cells have to be delicately regulated, as deregulation of this process can lead to many skin diseases, including skin cancers. However, the underlying molecular mechanisms involved in skin homeostasis remain poorly defined. In this study, with quantitative proteomics approach, we identified an important interaction between KDF1 (Keratinocyte Differentiation Factor 1) and IKKα (IκB kinase α) in differentiating skin keratinocytes. Ablation of either KDF1 or IKKα in mice leads to similar but striking abnormalities in skin development, particularly in skin epidermal differentiation. With biochemical and mouse genetics approach, we further demonstrate that the interaction of IKKα and KDF1 is essential for epidermal differentiation. To probe deeper into the mechanisms, we find that KDF1 associates with a deubiquitinating protease, USP7 (Ubiquitin Specific Peptidase 7), and KDF1 can regulate skin differentiation through deubiquitination and stabilization of IKKα. Taken together, our study unravels an important molecular mechanism underlying skin tissue homeostasis and epidermal differentiation.
Project description:Although interfollicular epidermal (IFE) differentiation is thought to be stepwise as reflected in sharp boundaries between the basal, spinous, granular and cornified layers, this prediction has not been studied at a single cell resolution. We used single cell RNA-seq to show that IFE differentiation is best described as a single step gradualistic process with a large number of transition cells between the basal and spinous layer. RNA-velocity analysis identifies a commitment point that separates the plastic basal and transition cell state from the unidirectionally differentiating cells. We also show that GRHL3, best known for promoting IFE terminal differentiation, has a major function in suppressing epidermal stem cell expansion and the emergence of an abnormal stem cell state by suppressing Wnt signaling in stem cells.
Project description:Id1 and its closely related family member Id3 are expressed by a diversity of stem and progenitor cells. We show that Id1/3 are required for the self-renewal and proliferation of triple negative breast cancer (TNBC) cells both in vitro and in vivo. Furthermore, we identified that Id1/3 negatively regulates the tumour suppressor gene Robo1. Depletion of Robo1 could rescue the proliferative defect induced by Id1/3 knockdown. To understand the mechanisms by which Robo1 rescues cell proliferation in Id1/3 depleted cells, we performed RNA-Sequencing on 4T1 cells with Dox-inducible Id1/3 KD and/or Robo1 depletion using siRNA. We conclude that following Id1/3 knockdown, Robo1 is induced and exerts anti-proliferative effects via suppression of a Myc transcriptional program.
Project description:Reintroduction of CEBPA in MN1-overexpressing hematopoietic cells prevents their hyper-proliferation and restores myeloid differentiation. Forced expression of MN1 in primitive mouse hematopoietic cells causes acute myeloid leukemia and impairs all-trans retinoic acid (ATRA) induced granulocytic differentiation. Here, we studied the effects of MN1 on myeloid differentiation and proliferation using primary human CD34+ hematopoietic cells, lineage depleted mouse bone marrow cells, and bipotential (granulocytic/monocytic) human AML-cell lines. We show that exogenous MN1 stimulated the growth of CD34+ cells, which was accompanied by enhanced survival and increased cell cycle traverse in cultures supporting progenitor cell growth. Forced MN1 expression impaired both granulocytic and monocytic differentiation in vitro in primary hematopoietic cells and AML cell lines. Endogenous MN1 expression was higher in human CD34+ cells compared to both primary and in vitro differentiated monocytes and granulocytes. Microarray and real time RT-PCR analysis of MN1-overexpressing CD34+ cells showed down regulation of CEBPA and its downstream target genes. Re-introduction of conditional and constitutive CEBPA overcame the effects of MN1 on myeloid differentiation and inhibited MN1-induced proliferation in vitro. These results indicate that down regulation of CEBPA activity contributes to MN1-modulated proliferation and impaired myeloid differentiation of hematopoietic cells Human BM derived CD34+ cells (Stemcell Technologies, Vancouver, BC, Canada) were expanded for 2 days and transduced with MSCV-IRES-GFP or MSCV-MN1-IRES-GFP retrovirus for another 2 days. One day later RNA was isolated from GFP+/CD34+ FACS-sorted cells using Trizol (Sigma) and samples were subjected to micro array analysis following Affymetrix protocols (Affymetrix, Santa Clara, CA) using the GeneChip Human U133 Plus 2.0 array