ChIP-seq of Phytophthora infestans (3 days post incubation)
Ontology highlight
ABSTRACT: Phytophthora infestans, the causal agent of potato late blight, is a devastating plant disease that was responsible for the Irish potato famine and continues to threaten global food security. While the P. infestans genome is an excellent resource for studying the aggressiveness of this pandemic pathogen, its epigenome remains poorly understood. In this study, utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified post-translational modifications (PTMs) at the P. infestans core histone H3. The PTMs include prevalent modifications in eukaryotes, as well as some novel marks, such as H3K53me2 and H3K122me3. We focused on trimethylations of H3K4, H3K9, H3K27, and H3K36, and profiled the P. infestans epigenome using native chromatin immunoprecipitation followed by sequencing (N-ChIP-seq). In parallel, we mapped P. infestans chromatin accessibility using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). We found that adaptive genomic compartments display significantly higher levels of H3K9me3 and H3K27me3 and are generally found in condensed chromatin. Interestingly, highly accessible regions with ATAC-seq peaks are also found in this compartment. We observed that genes encoding virulence factors, such as effectors, are enriched in open chromatin regions with few histone modifications. Based on N-ChIP-seq at 3 days post-incubation, we revealed the PTM dynamics in secretome genes from the mycelium to the infection stage. Using a combination of genomic, epigenomic, and transcriptomic strategies, our study illustrates the epigenetic states and changes in P. infestans, helping to elucidate genomic functions and regulation in this pathogen.
ORGANISM(S): Phytophthora infestans
PROVIDER: GSE215998 | GEO | 2023/10/19
REPOSITORIES: GEO
ACCESS DATA