A TDP-43 acetylation-mimic mutation that disrupts RNA-binding drives FTLD-like neurodegeneration in a mouse model of sporadic TDP-43 proteinopathy
Ontology highlight
ABSTRACT: TDP-43 proteinopathies including frontotemporal lobar dementia (FTLD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic-acid binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed an endogenous model of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs its RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of aberrant acetylation-mimic TDP-43K145Q resulted in stress-induced phase-separated nuclear TDP-43 foci formation and loss-of-TDP-43-function in mouse primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons. Aged mice harboring the single TDP-43K145Q mutation recapitulate several key hallmarks of neurodegenerative proteinopathies, including progressive TDP-43 phosphorylation and insolubility, cytoplasmic mis-localization, widespread transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which aberrant TDP-43 acetylation drives neuronal dysfunction and cognitive decline through alternative splicing and transcription of genes important in synaptic plasticity and apoptosis, providing a new paradigm to interrogate FTLD disease mechanisms and uncover disease-modifying therapeutics.
ORGANISM(S): Mus musculus
PROVIDER: GSE216294 | GEO | 2023/01/09
REPOSITORIES: GEO
ACCESS DATA