Microarray expression data of NCI-H1975 cells treated with osimertinib, alpelisib, or combination of these in the presence or absence of L-histidinol.
Ontology highlight
ABSTRACT: Oncogenic signals often activate abnormal proliferation, while simultaneously activate stress-adaptive mechanisms such as the integrated stress response (ISR) to ensure rapid growth under intrinsic and extrinsic stress conditions. In this study, we investigated the involvement of EGFR-PI3K pathway in the regulation of ISR in EGFR-mutant NSCLC cell lines under amino acid deprivation. We found that the third generation EGFR inhibitor osiemrtinib suppressed induction of activation transcription factor 4 (ATF4), the key ISR effector, in EGFR mutant cells, while the effect was to a less extent in cells harboring PIK3CA-co-alteration. PI3K inhibitors including P110a-specific inhibitor alpelicib markedly suppress ATF4 induction in PIK3CA-mutant cell lines. To further explore the role of EGFR-PI3K, transcriptome analysis was performed in EGFR- and PIK3CA-mutated NCI-H1975 cells treated with osimertinib, alpelisib, or combination of these in the absence or presence of histidyl-tRNA inhibitor L-histidinol (His), mimicking amino acid deprived conditions. Among His-induced genes, either osimertinib or alpelisib partially, but the combination dramatically suppressed a cluster of genes targeted by ATF4. Furthermore, combination of osimertinib and alpelisib increased apoptotic cells under amino acid deprived conditions. These results indicate that oncogenic EGFR-PI3K pathway contributes to cellular adaptation to stress conditions through ATF4. We used microarrays to identify genes whose expression is up- or down-regulated by inhibition of EGFR, PI3K, or both under amino acid deprivation.
ORGANISM(S): Homo sapiens
PROVIDER: GSE216508 | GEO | 2023/03/22
REPOSITORIES: GEO
ACCESS DATA