Project description:Using the ATH1 Affymetrix microarrays consisting of about 23,000 genes, we examined the response of Arabidopsis seedlings to chito-tetramers, chito-octamers and hydrolyzed chitin after 30 min of treatment. Keywords = chitin Keywords = defense Keywords = elicitor Keywords = mutant Keywords = powdery mildew Keywords = Erysiphe cichoracearum Keywords: ordered
Project description:To see the function of CERK1 receptor-like kinase in the chitin elicitor signaling in Arabidopsis, we compared the gene expression profiles in the chitin oligosaccharide treated seedlings of wild type A. thaliana and CERK1 knock-out mutant. Keywords: Defense response
Project description:Chitin oligomers, released from fungal cell walls by endochitinase, induce defense and related cellular responses in many plants. However, little is known about chitin responses in the model plant Arabidopsis. We describe here a large scale characterization of gene expression patterns in Arabidopsis in response to chitin treatment using an Arabidopsis microarray consisting of 2,375 EST clones representing putative defense-related and regulatory genes. Transcript levels for 71 ESTs, representing 61 genes, were altered >3-fold in chitin-treated seedlings relative to control seedlings. A number of transcripts exhibited altered accumulation as early as 10 min after exposure to chitin, representing some of the earliest changes in gene expression observed in chitin-treated plants. Included among the 61 genes are those that have been reported to be elicited by various pathogen-related stimuli in other plants. Additional genes, including genes of unknown function, were also identified broadening our understanding of chitin-elicited responses. Among transcripts with enhanced accumulation, one cluster was enriched in genes with both the W-box promoter element and a novel regulatory element. In addition, a number of transcripts had decreased abundance, encoding several proteins involved in cell wall strengthening and wall deposition. The chalcone synthase promoter element was identified in the upstream regions of these genes, suggesting that pathogen signals may suppress expression of some genes. These data indicate that Arabidopsis will be an excellent model to elucidate mechanisms of chitin elicitation in plant defense. Groups of assays that are related as part of a time series. Keywords: time_series_design
Project description:Chitin oligomers, released from fungal cell walls by endochitinase, induce defense and related cellular responses in many plants. However, little is known about chitin responses in the model plant Arabidopsis. We describe here a large scale characterization of gene expression patterns in Arabidopsis in response to chitin treatment using an Arabidopsis microarray consisting of 2,375 EST clones representing putative defense-related and regulatory genes. Transcript levels for 71 ESTs, representing 61 genes, were altered >3-fold in chitin-treated seedlings relative to control seedlings. A number of transcripts exhibited altered accumulation as early as 10 min after exposure to chitin, representing some of the earliest changes in gene expression observed in chitin-treated plants. Included among the 61 genes are those that have been reported to be elicited by various pathogen-related stimuli in other plants. Additional genes, including genes of unknown function, were also identified broadening our understanding of chitin-elicited responses. Among transcripts with enhanced accumulation, one cluster was enriched in genes with both the W-box promoter element and a novel regulatory element. In addition, a number of transcripts had decreased abundance, encoding several proteins involved in cell wall strengthening and wall deposition. The chalcone synthase promoter element was identified in the upstream regions of these genes, suggesting that pathogen signals may suppress expression of some genes. These data indicate that Arabidopsis will be an excellent model to elucidate mechanisms of chitin elicitation in plant defense. Groups of assays that are related as part of a time series. Keywords: time_series_design Computed
Project description:Global analysis of gene expression in 10 day old brm-101 and syd-2 mutant seedlings compared to wild type Landsberg erecta seedlings. Keywords: mutant analysis
Project description:Analysis of the genome wide response of wild type and two mutant arabidopsis thaliana seedlings to norflurazon Keywords: Genome wide response to inhibition of chloroplast development
Project description:Chitin soil amendment is known to improve soil quality, plant growth and plant stress resilience, but the underlying mechanisms are not well understood. In this study, we monitored chitin’s effect on lettuce physiology every two weeks through an eight-week growth period, analyzed the early transcriptional reprogramming and related metabolomic changes of lettuce, in response to crab chitin treatment in peat-based potting soil. In commercial growth conditions, chitin amendment still promoted lettuce growth, increased chlorophyll content, the number of leaves and crop head weight from week six. The flavonoid content in lettuce leaves was altered as well, showing an increase at week two but a decrease from week six. Transcriptomic analysis showed that over 300 genes in lettuce root were significant differentially expressed after chitin soil treatment. Gene Ontology-term (GO) enrichment analysis revealed statistical overrepresentation of GO terms linked to photosynthesis, pigment metabolic process and phenylpropanoid metabolic process. Further analysis of the differentially expressed genes (DEGs) showed that the flavonoid pathway is mostly upregulated whereas the bifurcation of upstream phenylpropanoid pathway towards lignin biosynthesis is mostly downregulated. Metabolomic analysis revealed the upregulation of salicylic acid, chlorogenic acid, ferulic acid, and p-coumaric acid in chitin treated lettuce seedlings. These phenolic compounds mainly influence the phenylpropanoid biosynthesis pathway and may play important roles in plant defense reactions. Our results suggest that chitin soil amendments might activate induced resistance by priming lettuce plants and promote lettuce growth via transcriptional changes.