Identification of human exTregs as CD16+CD56+ cytotoxic CD4+ T cells.
Ontology highlight
ABSTRACT: In chronic inflammatory diseases with an autoimmune component like atherosclerosis, some regulatory T cells (Tregs) lose their regulatory function and become exTregs. The present study was designed to identify surface markers specific of human exTregs, using an integrated approach from sorted mouse exTregs bulk RNA-Seq to human scRNA-Seq with CITE-Seq, to sort human exTregs and characterize them by transcriptome and function. We crossed inducible Treg lineage tracker mice (FoxP3-eGFP-Cre-ERT2 ROSA26CAG-fl-stop-fl-tdTomato) to atherosclerosis-prone Apoe -/- mice, sorted Tregs and exTregs from lymph nodes and spleens of replicate mice and determined their transcriptomes by bulk RNA sequencing (RNA-Seq). A support vector machine (SVM) approach identified the leading signature genes for exTregs as CST7, NKG7, GZMA, PRF1, TBX21 and CCL4. Projecting these genes onto feature maps of human PBMC single cell (sc)RNA-Seq with CITE-Seq from 61 subjects with and without atherosclerosis showed that CST7, NKG7, GZMA, PRF1, TBX21 and CCL4 mapped to CD4 T cells that expressed CD56 and CD16. This finding was validated in a second, independent scRNA- and CITE-Seq dataset. Even in healthy volunteers, a subpopulation of CD4 T cells expressed both CD56 and CD16. Bulk RNA-Seq identified these cells as cytotoxic CD4 T cells, which was functionally confirmed in a cell killing assay. DNA sequencing for TCRβ showed clonal expansion of Treg CDR3 sequences in CD16 + CD56 + exTregs. Taken together, we identify mouse and human exTregs as cytotoxic CD4 T cells.
ORGANISM(S): Mus musculus Homo sapiens
PROVIDER: GSE217010 | GEO | 2023/07/25
REPOSITORIES: GEO
ACCESS DATA