Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability compared to the wild-type 1021 strain. Here, we present data showing that RD64 is also highly effective in mobilizing P from insoluble sources, such as phosphate rock (PR). Under P-limiting conditions, the higher level of P-mobilizing activity of RD64 than of the 1021 wild-type strain is connected with the upregulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity, and the increased secretion into the growth medium of malic, succinic, and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released larger amounts of another P-solubilizing organic acid, 2-hydroxyglutaric acid, than plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited higher levels of dry-weight production than Mt-1021 plants. Here, we also report that P-starved Mt-RD64 plants show significant increases in both shoot and root fresh weights when compared to P-starved Mt-1021 plants. We discuss how, in a Rhizobium-legume model system, a balanced interplay of different factors linked to bacterial IAA overproduction rather than IAA production per se stimulates plant growth under stressful environmental conditions and, in particular, under P starvation.
Project description:Legumes and soil bacteria called rhizobia have coevolved a facultative nitrogen-fixing symbiosis. Establishment of the symbiosis requires bacterial entry via root hair infection threads and, in parallel, organogenesis of nodules that subsequently are invaded by bacteria. Tight control of nodulation and infection is required to maintain the mutualistic character of the interaction. Available evidence supports a passive bacterial role in nodulation and infection after the microsymbiont has triggered the symbiotic plant developmental program. Here we identify in Sinorhizobium meliloti, the Medicago symbiont, a cAMP-signaling regulatory cascade consisting of three receptor-like adenylate cyclases, a Crp-like regulator, and a target gene of unknown function. The cascade is activated specifically by a plant signal during nodule organogenesis. Cascade inactivation results in a hyperinfection phenotype consisting of abortive epidermal infection events uncoupled from nodulation. These findings show that, in response to a plant signal, rhizobia play an active role in the control of infection. We suggest that rhizobia may modulate the plant's susceptibility to infection. This regulatory loop likely aims at optimizing legume infection.
Project description:The nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 produces acidic symbiotic exopolysaccharides that enable it to initiate and maintain infection thread formation on host legume plants. The exopolysaccharide that is most efficient in mediating this process is succinoglycan (exopolysaccharide I [EPSI]), a polysaccharide composed of octasaccharide repeating units of 1 galactose and 7 glucose residues, modified with succinyl, acetyl, and pyruvyl substituents. Previous studies had shown that S. meliloti 1021 mutants that produce increased levels of succinoglycan, such as exoR mutants, are defective in symbiosis with host plants, leading to the hypothesis that high levels of succinoglycan production might be detrimental to symbiotic development. This study demonstrates that increased succinoglycan production itself is not detrimental to symbiotic development and, in fact, enhances the symbiotic productivity of S. meliloti 1021 with the host plant Medicago truncatula cv. Jemalong A17. Increased succinoglycan production was engineered by overexpression of the exoY gene, which encodes the enzyme responsible for the first step in succinoglycan biosynthesis. These results suggest that the level of symbiotic exopolysaccharide produced by a rhizobial species is one of the factors involved in optimizing the interaction with plant hosts.
Project description:Sinorhizobium meliloti forms symbiotic, nitrogen-fixing nodules on the roots of Medicago truncatula. The bacteria invade and colonize the roots through structures called infection threads. S. meliloti unable to produce the exopolysaccharide succinoglycan are unable to establish a symbiosis because they are defective in initiating the production of infection threads and in invading the plant. Here, we use microarrays representing 16,000 M. truncatula genes to compare the differential transcriptional responses of this host plant to wild-type and succinoglycan-deficient S. meliloti at the early time point of 3 days postinoculation. This report describes an early divergence in global plant gene expression responses caused by a rhizobial defect in succinoglycan production, rather than in Nod factor production. The microarray data show that M. truncatula inoculated with wild-type, succinoglycan-producing S. meliloti more strongly express genes encoding translation components, protein degradation machinery, and some nodulins than plants inoculated with succinoglycan-deficient bacteria. This finding is consistent with wild-type-inoculated plants having received a signal, distinct from the well characterized Nod factor, to alter their metabolic activity and prepare for invasion. In contrast, M. truncatula inoculated with succinoglycan-deficient S. meliloti more strongly express an unexpectedly large number of genes in two categories: plant defense responses and unknown functions. One model consistent with our results is that appropriate symbiotically active exopolysaccharides act as signals to plant hosts to initiate infection thread formation and that, in the absence of this signal, plants terminate the infection process, perhaps via a defense response.
Project description:BackgroundAuxin/indoleacetic acid (Aux/IAA) genes, coding a family of short-lived nuclear proteins, play key roles in wide variety of plant developmental processes, including root system regulation and responses to environmental stimulus. However, how they function in auxin signaling pathway and symbiosis with rhizobial in Medicago truncatula are largely unknown. The present study aims at gaining deeper insight on distinctive expression and function features of Aux/IAA family genes in Medicago truncatula during nodule formation.Principal findingsUsing the latest updated draft of the full Medicago truncatula genome, a comprehensive identification and analysis of IAA genes were performed. The data indicated that MtIAA family genes are distributed in all the M. truncatula chromosomes except chromosome 6. Most of MtIAA genes are responsive to exogenous auxin and express in tissues-specific manner. To understand the biological functions of MtIAA genes involved in nodule formation, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expression profiling of MtIAA genes during the early phase of Sinorhizobium meliloti (S. meliloti) infection. The expression patterns of most MtIAA genes were down-regulated in roots and up-regulated in shoots by S. meliloti infection. The differences in expression responses between roots and shoots caused by S. meliloti infection were alleviated by 1-NOA application.ConclusionThe genome-wide identification, evolution and expression pattern analysis of MtIAA genes were performed in this study. The data helps us to understand the roles of MtIAA-mediated auxin signaling in nodule formation during the early phase of S. meliloti infection.
Project description:Nitrogen (N) and phosphorus (P) are the most limiting factors for plant growth. Some microorganisms improve the uptake and availability of N and P, minimizing chemical fertilizer dependence. It has been published that the RD64 strain, a Sinorhizobium meliloti 1021 strain engineered to overproduce indole-3-acetic acid (IAA), showed improved nitrogen fixation ability as compared to the wild type 1021 strain. We present here data showing that RD64 is also highly effective in mobilizing P from insoluble sources such as phosphate rock (PR). Under P-limiting conditions, the higher P-mobilizing activity of RD64, as compared to the 1021 wild type strain, is connected with the up-regulation of genes coding for the high-affinity P transport system, the induction of acid phosphatase activity and the increased secretion into the growth media of malic, succinic and fumaric acids. Medicago truncatula plants nodulated by RD64 (Mt-RD64), when grown under P-deficient conditions, released higher amounts of another P-solubilizing organic acid, the 2-hydroxyglutaric acid, as compared to the plants nodulated by the wild-type strain (Mt-1021). It has already been shown that Mt-RD64 plants exhibited a higher dry weight production as compared to Mt-1021 plants. Here we report that also P-starved Mt-RD64 plants show a significant increase both in shoot and root fresh weight when compared to P-starved Mt-1021 plants. We discuss how, in a rhizobium-legume model system, a balanced interplay of different factors linked to the bacterial IAA over-production rather than IAA production per se stimulates plant growth under stressful environmental conditions, and in particular, under P-starvation.
Project description:Root nodule bacteria of Sinorhizobium meliloti species live in a symbiotic relationship with alfalfa plants. We report here the draft genome sequence of S. meliloti strain AK170, recovered from nodules of Medicago orthoceras (Kar. & Kir.) growing in an area impacted by salinization.
Project description:Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.
Project description:Sinorhizobium meliloti is a Gram-negative bacterium which fixes atmospheric nitrogen in symbiosis with Medicago spp. We report the draft genome sequence of S. meliloti strain CXM1-105, associated with nodules of Medicago sativa subsp. varia (Martyn) Arcang.