Reduced fatty acid synthesis and enhanced oxidation promote human definitive endoderm differentiation
Ontology highlight
ABSTRACT: Metabolic remodeling is one of the earliest events that occur during the early differentiation of embryonic stem cells (ESCs), but how these metabolic changes are regulated and participate in the cell differentiation is still largely undissected. Here, we define the fatty acid metabolism as a key player in definitive endoderm (DE) differentiation from human ESCs. During DE differentiation, lipogenesis is decreased while fatty acid β oxidation is enhanced. This dynamic is due to the phosphorylation of lipogenic enzyme acetyl-CoA carboxylase (ACC), which is mediated by AMP-activated protein kinase (AMPK) and inhibits the de novo fatty acid synthesis. More importantly, inhibition of fatty acid synthesis by either its inhibitors or AMPK agonist, significantly promotes the human endoderm differentiation, while blockade of the fatty acid oxidation by genetic manipulation or chemical antagonists impairs the differentiation. The de novo fatty acid synthesis inhibition and fatty acid β oxidation maintaining contribute to the accumulation of cellular acetyl-CoA, which is the essential substrate for protein acetylation. Further study reveals that SMAD3 acetylation and the subsequent subcellular localization exhibit significant change upon interfering fatty acid metabolism. Mechanistically, the accumulation of cellular acetyl-CoA guarantees the acetylation of key transcription factor SMAD3, which further causes the nuclear localization and activation of SMAD signaling pathway to promote DE differentiation. Thus, our current study reveals a fatty acid synthesis/oxidation shift during early differentiation and presents an instructive role of fatty acid metabolism in regulating human early endoderm differentiation.
Project description:Metabolic remodeling is one of the earliest events that occur during the early differentiation of embryonic stem cells (ESCs), but how these metabolic changes are regulated and participate in the cell differentiation is still largely undissected. Here, we define the fatty acid metabolism as a key player in definitive endoderm (DE) differentiation from human ESCs. During DE differentiation, lipogenesis is decreased while fatty acid β oxidation is enhanced. This dynamic is due to the phosphorylation of lipogenic enzyme acetyl-CoA carboxylase (ACC), which is mediated by AMP-activated protein kinase (AMPK) and inhibits the de novo fatty acid synthesis. More importantly, inhibition of fatty acid synthesis by either its inhibitors or AMPK agonist, significantly promotes the human endoderm differentiation, while blockade of the fatty acid oxidation by genetic manipulation or chemical antagonists impairs the differentiation. The de novo fatty acid synthesis inhibition and fatty acid β oxidation maintaining contribute to the accumulation of cellular acetyl-CoA, which is the essential substrate for protein acetylation. Further study reveals that SMAD3 acetylation and the subsequent subcellular localization exhibit significant change upon interfering fatty acid metabolism. Mechanistically, the accumulation of cellular acetyl-CoA guarantees the acetylation of key transcription factor SMAD3, which further causes the nuclear localization and activation of SMAD signaling pathway to promote DE differentiation. Thus, our current study reveals a fatty acid synthesis/oxidation shift during early differentiation and presents an instructive role of fatty acid metabolism in regulating human early endoderm differentiation.
Project description:Fatty acid synthesis is closely linked to nutrient availability and cellular energetic status. The committed step in fatty acid synthesis is the acetyl CoA carboxylase. Eukaryotes have two genes encoding acetyl CoA carboxylases, one encoding a cytosolic enzyme and another coding for a mitochondrial enzyme. They catalyze the synthesis of malonyl CoA in the cytosol and the mitochondria, respectively. While cytosolic malonyl CoA is the precursor for fatty acid synthesis, mitochondrial malonyl CoA controls the transfer of fatty acyl group into the mitochondria by inhibiting carnitine/palmitoyl transferase activity and thus, regulates β-oxidation. In Saccharomyces cerevisiae, β-oxidation is restricted to the peroxisomes, raising the question of the function of the mitochondrial isoform (HFA1). In this study, we replaced the cytosolic Acc1 with Hfa1 expressed in the cytosol by removing the mitochondrial leader peptide, under control of the HFA1 promoter. We studied fatty acid synthesis and transcription profiles in this strain during starvation for carbon or nitrogen, using glucose or ethanol as the carbon source. Under all the conditions studied, the key sensor of energetic status, Snf1, was activated, indicating active inhibition of fatty acid synthesis. The pool size of fatty acids was smaller when Acc1 was replaced with truncated Hfa1 for fatty acid synthesis. Yet, the transcription profiles were similar in both the cases. These results point towards the conclusion that Hfa1 is either catalytically less efficient or it is more sensitive to inhibition by Snf1. Gene expression from a strain of Saccharomyces cerevisiae where cytosolic fatty acid synthesis occurs by mitochondrial acetyl CoA carboxylase (without its mitochondrial leader peptide) is compared with that in a reference strain while growing in chemostats on carbon or nitrogen starvation using glucose or ethanol as the carbon source. There are two strains (reference or mutant), two carbon sources (glucose or ethanol) and two limitations (carbon or nitrogen), resulting in 8 comparisons. Each array was performed in duplicate, resulting in 16 CEL files. Growth was limited by either carbon or nitrogen. When carbon was the limited nutrient, we tested growth on either glucose or ethanol (both using ammonium sulfate as the nitrogen source). When ammonium sulfate was limiting, we used either glucose or ethanol as the carbon source.
Project description:Fatty acid synthesis is closely linked to nutrient availability and cellular energetic status. The committed step in fatty acid synthesis is the acetyl CoA carboxylase. Eukaryotes have two genes encoding acetyl CoA carboxylases, one encoding a cytosolic enzyme and another coding for a mitochondrial enzyme. They catalyze the synthesis of malonyl CoA in the cytosol and the mitochondria, respectively. While cytosolic malonyl CoA is the precursor for fatty acid synthesis, mitochondrial malonyl CoA controls the transfer of fatty acyl group into the mitochondria by inhibiting carnitine/palmitoyl transferase activity and thus, regulates β-oxidation. In Saccharomyces cerevisiae, β-oxidation is restricted to the peroxisomes, raising the question of the function of the mitochondrial isoform (HFA1). In this study, we replaced the cytosolic Acc1 with Hfa1 expressed in the cytosol by removing the mitochondrial leader peptide, under control of the HFA1 promoter. We studied fatty acid synthesis and transcription profiles in this strain during starvation for carbon or nitrogen, using glucose or ethanol as the carbon source. Under all the conditions studied, the key sensor of energetic status, Snf1, was activated, indicating active inhibition of fatty acid synthesis. The pool size of fatty acids was smaller when Acc1 was replaced with truncated Hfa1 for fatty acid synthesis. Yet, the transcription profiles were similar in both the cases. These results point towards the conclusion that Hfa1 is either catalytically less efficient or it is more sensitive to inhibition by Snf1. Gene expression from a strain of Saccharomyces cerevisiae where cytosolic fatty acid synthesis occurs by mitochondrial acetyl CoA carboxylase (without its mitochondrial leader peptide) is compared with that in a reference strain while growing in chemostats on carbon or nitrogen starvation using glucose or ethanol as the carbon source.
Project description:We report that upon ageing MSC undergo a metabolic switc, down-regulating glycolysis and inducing fatty acid oxidation, which results in elevated acetyl-CoA levels. However, aged cells exhibit chromatin compaction and histone hypo-aceylation. This is due to the lower levels of citrate carrier, resulting in impaired acetyl-CoA export from mitochondria to the cytosol, which concomitantly affetcs histone acetylation and osteogenesis.
Project description:We report that upon ageing MSC undergo a metabolic switc, down-regulating glycolysis and inducing fatty acid oxidation, which results in elevated acetyl-CoA levels. However, aged cells exhibit chromatin compaction and histone hypo-aceylation. This is due to the lower levels of citrate carrier, resulting in impaired acetyl-CoA export from mitochondria to the cytosol, which concomitantly affetcs histone acetylation and osteogenesis.
Project description:Lymphatic vessels are involved in fluid drainage and are critical for health. To date, only genetic signaling pathways have been implicated in lymphatic development, and a role for metabolism has not been described. Here, we report that transcription factor Prox1 increases fatty acid ß-oxidation (FAO) through upregulation of CPT1a, a rate-controlling step of FAO. Lymphatic endothelial cells (LECs) oxidize fatty acids to proliferate and migrate. By providing acetyl-CoA, FAO is also critical for the maintenance of differentiated LECs through the regulation of histone acetylation of key lymphangiogenic genes. Loss of CPT1a in LEC precursors causes lymphatic defects in vivo, while restoration of acetyl-CoA by supplementing acetate to replenish cellular acetyl-CoA levels rescues this process.
Project description:Liver tumors had high levels of histone acetylation. Nrf2 knockout mice developed fewer tumors than Nrf2 wild-type mice. The mechanistic study found that Nrf2 knockout reduced the generation of acetyl CoA from impaired glycolysis, TCA cycle, and fatty acid metabolism. Acetyl CoA is the substrate for protein acetylation including histone acetylation. Here we determined the genome-wide distribution of AcH3K27. We found that Nrf2 through regulating acetyl CoA production affects histone acetylation (AcH3K27) to modulate the expression of genes, whose products were involved in the glycolysis, TCA cycle, fatty acid metabolism, and oncogenic Myc/mTor signaling. Our findings supported an Nrf2-integrated metabolic, epigenetic and oncogenic signaling in driving liver tumor development.
Project description:In this study we report that histone crotonylation promotes human embryonic stem cell differentiation to endoderm cells. Addition of crotonate, a precursor for crotonyl-CoA and therefore histone crotonylation, dramatically enhanced endoderm cell differentiation from human embryonic stem cells, while incubation of acetate, a precursor of acetyl-CoA and therefore histone acetylation, did not change the efficiency of endoderm differentiation.
Project description:Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.