Project description:Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. The Hippo signaling pathway has emerged as a significant suppressive pathway for hepatocellular carcinogenesis. The core components of the Hippo pathway constitute a kinase cascade, which inhibits the functional activation of YAP/TAZ. Interestingly, the overactivation of YAP/TAZ is commonly observed in hepatocellular carcinoma, although the inhibitory kinase cascade of the Hippo pathway is still functional. Recent studies have indicated that the ubiquitin‒proteasome system also plays important roles in modulating Hippo signaling activity. Our DUB (deubiquitinase) siRNA screen showed that USP1 is a critical regulator of Hippo signaling activity. Analysis of TCGA data demonstrated that USP1 expression is elevated in HCC and associated with poor survival in HCC patients. RNA sequencing analysis revealed that USP1 depletion affects Hippo signaling activity in HCC cell lines. Mechanistic assays revealed that USP1 is required for Hippo/TAZ axis activity and HCC progression. USP1 interacted with the WW domain of TAZ, which subsequently enhanced TAZ stability by suppressing K11-linked polyubiquitination of TAZ. Our study identifies a novel mechanism linking USP1 and TAZ in regulating the Hippo pathway and one possible therapeutic target for HCC.
Project description:CRISPR Cas9-based functional genomics screening is a powerful approach for identifying and characterizing novel oncology drug targets. Here, we elucidate the synthetic lethal mechanism of deubiquitinating enzyme USP1 in cancers with underlying DNA damage vulnerabilities, specifically BRCA1/2 mutant tumors and a subset of BRCA1/2 wild-type (WT) tumors. In sensitive cells, pharmacological inhibition of USP1 leads to decreased DNA synthesis concomitant with the induction of S-phase-specific DNA damage. Genome-wide CRISPR-Cas9 screens identified RAD18 and UBE2K, which promote PCNA mono- and polyubiquitination respectively, as downstream mediators of USP1 dependency. The accumulation of mono- and polyubiquitinated PCNA following USP1 inhibition was associated with a reduction in total PCNA protein levels. Ectopic expression of WT and ubiquitin-dead K164R PCNA reversed USP1 inhibitor sensitivity. Our results demonstrate, for the first time, that USP1 dependency hinges on the aberrant processing of mono- and polyubiquitinated PCNA. Moreover, this mechanism of USP1 dependency extends beyond BRCA1/2 mutant tumors to a novel subset of BRCA1/2 WT cancer enriched in ovarian and lung lineages. We further show PARP and USP1 inhibition are strongly synergistic in BRCA1/2 mutant cell lines and xenograft models. We postulate USP1 dependency unveils a previously uncharacterized vulnerability linked to post-translational modifications of PCNA. Taken together, USP1 inhibition may represent a unique therapeutic strategy for BRCA1/2 mutant tumors and a subset of BRCA1/2 WT tumors.
Project description:The clinical outcomes of hepatocellular carcinoma (HCC) remain dismal. Elucidating the molecular mechanisms for the progression of aggressive HCC holds the promise for developing novel intervention strategies. The transactivation response element RNA-binding protein (TRBP/TARBP2), a key component of microRNA (miRNA) processing and maturation machinery has exhibited to play conflicting roles in tumor development and progression. We sought to investigate the expression of TARBP2 in HCC using well-characterized HCC cell lines, patient-derived tissues and blood samples. Additionally, the potential prognostic and diagnostic value of TARBP2 in HCC were analyzed using Kaplan-Meier plots and ROC curve. Cell counting kit‐8 (CCK‐8), wound healing and transwell assays examined the ability of TARBP2 to induce cell proliferation, migration, and invasion in HCC cell lines. RNA sequencing was applied to identify the downstream elements of TARBP2. The interaction of potential targets of TARBP2, miR‐145 and serpin family E member 1 (SERPINE1), was assessed using luciferase reporter assay. TARBP2 expression was down-regulated in HCC cell lines relative to normal hepatocyte cells, with a similar pattern further confirmed in tissue and blood samples. Notably, the loss of TARBP2 was demonstrated to promote proliferation, migration, and invasion in HCC cell lines. Interestingly, the reduction of TARBP2 was shown to result in the upregulation of SERPINE1, also known as plasminogen activator inhibitor (PAI-1), which is a vital gene of the HIF-1 signaling pathway. Knockdown of SERPINE1 rescued the TARBP2-lost phenotype. Moreover, TARBP2 depletion induced the upregulation of SERPINE1 through reducing the processing of miR-145, which directly targets SERPINE1. Finally, overexpression of miR-145 repressed SERPINE1 and rescued the functions in sh-TARBP2 HCC cells. Our findings underscore a linear TARBP2-miR-145-SERPINE1 pathway that drives HCC progression, with the potential as a novel intervention target for aggressive HCC.
Project description:To explore the function of deubiquitinase USP1 in breast cancer cells, we performed RNA sequencing to analyze the expression pattern changes by knockdown of USP1 in MCF7 cells.
Project description:Background Hepatocellular carcinoma (HCC) is a common lethal malignant tumor worldwide. Circular RNAs (circRNAs) have been reported to affect the development of human cancers, including HCC. In this project, we aim to clarify the functional effect of circular CDR1as (circ_CDR1as) on HCC progression. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot is implemented to detect the expression of circ_CDR1as, microRNA (miR)-1287 and Raf-1 proto-oncogene, serine/threonine kinase (Raf1). Cell proliferation is assessed via colony formation and 3-(4, 5)-dimethylthiazole-2-y1)-2, 5-biphenyl tetrazolium bromide (MTT) assays. Cell migration and invasion are measured by Transwell assay. The target relationship between miR-1287 and circ_CDR1as or Raf1 is validated through dual-luciferase reporter assay. The levels of epithelia–mesenchymal transition (EMT) markers and the MEK/ERK signal pathway-related proteins are examined by Western blot. Model in nude mice is constructed to determine the role of circ_CDR1as in vivo. Results Expression of circ_CDR1as and Raf1 is elevated, while miR-1287 expression is decreased in HCC. Depletion of circ_CDR1as or Raf1 could inhibit proliferation and metastasis of HCC cells. Besides, circ_CDR1as regulates Raf1 expression by targeting miR-1287. MiR-1287 upregulation or Raf1 depletion could partially counterbalance circ_CDR1as depletion-mediated inhibitory effects on HCC cell behaviors. Moreover, circ_CDR1as depletion represses HCC progression through inactivating MEK/ERK pathway. In addition, circ_CDR1as depletion suppresses tumor growth in vivo via regulating miR-1287/Raf1 pathway. Conclusion Circ_CDR1as depletion inhibits HCC cell proliferation and metastasis by miR-1287/Raf1 and MEK/ERK pathways, highlighting a promising molecular target for HCC treatment.
Project description:Accumulating evidence suggests that DEAD-box proteins are essential in RNA metabolism and play pivotal roles in cancer progression. However, the mechanisms underlying how DDX24 drives hepatocellular carcinoma (HCC) remain largely unknown. In this study, we demonstrated that DDX24 was an oncogene and identified DDX24 promoted HCC development via interacting with NCL.
Project description:Recently, long noncoding RNAs (lncRNAs) have been implicated in diverse processes of hepatocarcinogenesis. However, the involvement of lncRNAs in the crosstalk between LC-MSCs microenvironment and HCC progression is still unknown. In this study, for the first time, we investigated the role of lncRNAs in the crosstalk between HCC cells and LC-MSCs. We found that LC-MSCs acted as a pivotal contributor to HCC metastasis, cancer stem cell maintenance and epithelial-mesenchymal transition (EMT).
Project description:Breast cancer is one of the most common malignancies worldwide, while the luminal types (ERα positive) accounts for two third of all breast cancer cases. Although ERα positive breast cancer could be effective controlled by endocrine therapy, most of the patients will develop endocrine resistance, which becomes a headache clinical issue for breast cancer field. Endocrine resistance could be caused by multiple pathway disorders, the dys-regulation of ERα signaling might be a critical factor, which makes it urgent and important to reveal the potential molecular mechanism of ERα signaling. In our current study, we identified a new deubiquitination enzyme USP1 through screening the whole DUB (Deubiquitinases) siRNA library. The expression of USP1 is elevated in human breast cancer compared with normal mammary tissues. Importantly, USP1 expression levels are specially correlated with poor survival in ERα positive patients. USP1 depletion inhibited breast cancer cell progression and ERα signaling activity. Immuno-precipitation assays indicate that USP1 associates with ERα and promotes its stability possibly via inhibiting ERα K48-linked poly-ubiquitination. In conclusion, our data implicate a non-genomic mechanism by USP1 via stabilizing ERα protein controls ERα target gene expression linked to breast cancer progression.
Project description:Non-alcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is a significant risk factor for hepatocellular carcinoma (HCC). However, a preclinical model of progressive NAFLD/NASH is largely lacking. Here, we report that mice with hepatocyte-specific deletion of Tid1, encoding a mitochondrial cochaperone, tended to develop NASH-dependent HCC. Mice with hepatic Tid1 deficiency showed impairing mitochondrial function and causing fatty acid metabolic dysregulation; meanwhile, sequentially developed fatty liver, NASH, and cirrhosis/HCC in a diethylnitrosamine (DEN) induced oxidative environment. The pathological signatures of human NASH, including cholesterol accumulation and activation of inflammatory and apoptotic signaling pathways, are also present in these mice. Clinically, low Tid1 expression was associated with unfavorable prognosis in patients with HCC. Empirically, hepatic Tid1 deficiency directly disrupts entire mitochondria that play a key role in the NASH-dependent HCC development. Overall, we established a new mouse model that develops NASH-dependent HCC and provides a promising approach to improve the treatment.