Expression data from bone marrow derived- and tumor induced- CD11b+ MDSC
Ontology highlight
ABSTRACT: Tumor growth is associated with a profound alteration of myelopoiesis, leading to recruitment of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Analyzing the cytokines affecting myelo-monocytic differentiation produced by various experimental tumors, we found that GM-CSF, G-CSF, and IL-6 allowed a rapid generation of MDSCs from precursors present in mouse and human bone marrow (BM). BM-MDSCs induced by GM-CSF+IL-6 possessed the highest tolerogenic activity, as revealed by the ability to impair the priming of IFN- -producing CD8+ T cells upon in vivo adoptive transfer. Moreover, adoptive transfer of syngeneic, GM-CSF+IL-6-conditioned MDSCs to diabetic mice transplanted with allogeneic pancreatic islets resulted in long term acceptance of the allograft and correction of the diabetic status. Cytokines inducing MDSCs acted on a common molecular pathway. Immunoregulatory activity of both tumor-induced and BM-derived MDSCs was entirely dependent on C/EBP transcription factor, a key component of the emergency myelopoiesis triggered by stress and inflammation. Adoptive transfer of tumor antigen-specific CD8+ T lymphocytes resulted in therapy of established tumors only in mice lacking C/EBP in myeloid compartment. These data unveil another link between inflammation and cancer and identify a novel molecular target to control tumor-induced immune suppression. We used gene expression analysis to identify those factors, secreted by tumor-infiltrating MDSC, which could drive emathopoiesis. Moreover we compare gene expression profile of tumor-induced MDSC, obtained from either the spleen and the tumor infiltrate of tumor bearing mice, and in vitro bone marrow-derived MDSC.
ORGANISM(S): Mus musculus
PROVIDER: GSE21927 | GEO | 2010/06/03
SECONDARY ACCESSION(S): PRJNA126815
REPOSITORIES: GEO
ACCESS DATA