Genomics

Dataset Information

0

Loss of DNA replication control is a potent initiator of gene amplification


ABSTRACT: Eukaryotic cells use numerous mechanisms to ensure that no segment of their DNA is re-replicated within a single cell cycle. Despite longstanding speculation that such tight regulation is needed to protect cells from genomic alterations, this notion has never been experimentally tested. Here we show that even just transient and limited re-replication in Saccharomyces cerevisiae can strongly induce the critical first step of gene amplification, increasing gene copy number from one to two or more. The amplified units, or amplicons, consist of large internal chromosomal segments that are bounded by Ty repetitive elements and are intrachromosomally arrayed at their endogenous locus in direct head-to-tail orientation. The presence of hybrid Ty elements at inter-amplicon junctions together with the dependence of amplification on RAD52 indicate that in budding yeast these re-replication-induced gene amplifications (RRIGA) are mediated by homologous recombination between re-replicated non-allelic repetitive elements. These results finally establish the importance of stringent replication control for genome stability and suggest that re-replication should now be considered as a possible contributor to gene copy number changes in fields as diverse as cancer biology, evolution, and human genetics.

ORGANISM(S): Saccharomyces cerevisiae

PROVIDER: GSE22018 | GEO | 2011/05/17

SECONDARY ACCESSION(S): PRJNA127435

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2011-05-17 | E-GEOD-22018 | biostudies-arrayexpress
2013-01-04 | GSE41259 | GEO
2013-01-04 | E-GEOD-41259 | biostudies-arrayexpress
2016-02-25 | E-GEOD-74487 | biostudies-arrayexpress
2010-05-18 | E-GEOD-14761 | biostudies-arrayexpress
2009-05-13 | E-MTAB-105 | biostudies-arrayexpress
2010-07-21 | E-GEOD-22411 | biostudies-arrayexpress
2018-05-31 | GSE98446 | GEO
2007-02-10 | GSE6991 | GEO
2007-02-08 | GSE6984 | GEO