3D genome remodeling and homologous pairing during meiotic prophase of mouse oogenesis and spermatogenesis
Ontology highlight
ABSTRACT: We comprehensively compared the chromatin structures and transcriptomes in successive substages of female and male mouse meiotic prophase by using sisHi-C and RNA-Seq methods. Interestingly, the transcriptional change happened earlier than chromatin structures reprograming that chromatin structures largely maintained the pre-meiotic condition in leptotene. Also, compartments and TADs gradually disappeared and then slowly recovered in both oocytes and spermatocytes. We characterized the events of homologous chromosomes pairing and found homologues adopted two sex-conserved pairing strategies prior to and after leptotene-to-zygotene transition, which firstly contacted more frequently in LINE enriched compartment B and then switched to SINE enriched compartment A. The sexual difference of transcriptome was most obvious in late meiotic prophase, which reflected in gamete morphology and function differences. We also complemented marker genes for each substage of oocytes and spermatocytes meiotic prophase, and predicted the sex-specific meiotic functional genes, whose mutation or deletion may cause sex different effects on fertility. In summary, this study revealed the sexual similarities and dimorphic of higher-order chromatin architecture, homologous pairing and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.
Project description:Prophase I of male meiosis involves dynamic chromosome segregation processes during early spermatogenesis, including synapsis, meiotic recombination, and cohesion. Genetic defects in genes participating in these processes consistently cause reproduction failure in mice. To identify candidate genes responsible for infertility in humans, we performed expression profiling of mouse spermatogenic cells undergoing meiotic prophase I. Cell fractions enriched in spermatogonia, leptotene/zygotene spermatocytes, or pachytene spermatocytes were separately isolated from mouse testes for RNA extraction. To minimize the contamination of other cell types, we fractionated the testicular cells undergoing the first round of spermatogenesis using Percoll gradient procedure. The cell fractions were characterized by morphological analysis by phase contrast microscopy and Nomarski interference microscopy, and then expression of cell lineage- and spermatogenesis stage-specific genes were examined by RT-PCR. The most enriched fractions for spermatogonia (fraction2 from day8), leptotene/zygotene spermatocytes (fraction5 from day12), and pachytene spermatocytes (fraction8 from day15) were subjected to hybridization on Affymetrix microarrays.
Project description:We combine synchronization of spermatogenesis, cytological analyses and single-cell RNA-seq (scRNA-seq) in the Sertoli cell androgen receptor knockout (SCARKO) mutant and control mice, and demonstrate that SCARKO mutant spermatocytes exhibited normal expression and localization of key protein markers of meiotic prophase events, indicating that initiation of meiotic prophase is not androgen dependent, whereas scRNA-seq analysis revealed a molecular transcriptomic block in an early meiotic prophase state (leptotene/zygotene) in mutant germ cells, and identified several misregulated genes in SCARKO Sertoli cells, many of which have been previously implicated in male infertility.
Project description:The four mammalian Argonaute family members are thought to share redundant functions in the microRNA pathway, yet only AGO2 possesses the catalytic "slicer" function required for RNA interference. Whether AGO1, AGO3, or AGO4 possess specialized functions remains unclear. Here, we Series_summary = show that AGO4 localizes to spermatocyte nuclei during meiotic prophase I, specifically at sites of asynapsis and in the transcriptionally silenced XY sub-domain, the sex body. We generated Ago4 knockout mice and show that Ago4-/- spermatogonia initiate meiosis early, resulting from premature induction of retinoic acid-response genes. During prophase I, the sex body assembles incorrectly in Ago4-/- mice, leading to disrupted meiotic sex chromosome inactivation (MSCI). This is associated with a dramatic loss of microRNAs, >20% of which arise from the X chromosome. Loss of AGO4 results in increased AGO3 in spermatocytes, indicating some degree of redundancy. Thus, AGO4 regulates meiotic entry and MSCI in mammalian germ cells, implicating small RNA pathways in these processes. mRNA transcripts were isolated and prepared using pachytene spermatocytes, pre-meiotic testes and other tissues from Ago4+/+ and Ago4-/- littermates and sequenced using Illumina HiSeq2000. small RNA transcripts were isolated and prepared using pachytene spermatocytes from adult Ago4+/+ and Ago4-/- littermates and sequenced using Illumina GAII.
Project description:During spermatogenesis, mammalian spermatogonia undergo mitotic division, to maintain stem cell pool via self-renewal and generate differentiating progenitor cells for entry into meiotic prophase. During the perinatal stage, de novo DNA methylation occurring in pro-spermatogonia plays a key role to complete meiotic prophase and initiate meiotic division. In contrast, the role of the maintenance DNA methylation pathway for regulation of meiotic prophase, or meiotic division, in the adult is not well understood. Here, by using conditional mutants for Np95 (nuclear protein 95 kDa, also known as Uhrf1) or Dnmt1 [DNA (cytosine-5)-methyltransferase 1], two proteins that are essential for maintenance DNA methylation, we reveal that both NP95 and DNMT1 are co-expressed in spermatogonia and that these factors are necessary for meiosis in male germ cells. We found that Np95- or Dnmt1-deficient spermatocytes exhibited spermatogenic defects involving synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in Np95-deficient as well as Dnmt1-deficient spermatocytes. Based on these observations, we propose that DNA methylation established in pre-meiotic spermatogonia regulates synapsis of homologous chromosomes, and in turn quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role to ensure faithful transmission of both genetic and epigenetic information to offspring.
Project description:During spermatogenesis, mammalian spermatogonia undergo mitotic division, to maintain stem cell pool via self-renewal and generate differentiating progenitor cells for entry into meiotic prophase. During the perinatal stage, de novo DNA methylation occurring in pro-spermatogonia plays a key role to complete meiotic prophase and initiate meiotic division. In contrast, the role of the maintenance DNA methylation pathway for regulation of meiotic prophase, or meiotic division, in the adult is not well understood. Here, by using conditional mutants for Np95 (nuclear protein 95 kDa, also known as Uhrf1) or Dnmt1 [DNA (cytosine-5)-methyltransferase 1], two proteins that are essential for maintenance DNA methylation, we reveal that both NP95 and DNMT1 are co-expressed in spermatogonia and that these factors are necessary for meiosis in male germ cells. We found that Np95- or Dnmt1-deficient spermatocytes exhibited spermatogenic defects involving synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in Np95-deficient as well as Dnmt1-deficient spermatocytes. Based on these observations, we propose that DNA methylation established in pre-meiotic spermatogonia regulates synapsis of homologous chromosomes, and in turn quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role to ensure faithful transmission of both genetic and epigenetic information to offspring.
Project description:In mammals and several other taxa, the ability of males to cope with the limited synapsis of the X and Y chromosomes during prophase I of meiosis relies on the process of meiotic sex chromosome inactivation (MSCI). Components of the somatic DNA damage response machinery, including ATR, TOPBP1, MDC1 and BRCA1 play key roles in MSCI, although how they establish XY silencing remains incompletely understood. In particular, it remains unclear how DDR factors coordinate XY silencing with DNA repair, chromosome synapsis and the formation of the sex body, a distinct phase-separated sub-nuclear structure formed during prophase I to house the unsynapsed XY bivalent. Here we report a mutant mouse (Topbp1B5/B5), harboring mutations in the BRCT5 domain of Topbp1, that shows impaired XY silencing but grossly normal sex body formation. While Topbp1B5/B5 mice are viable, without detectable somatic defects, males are completely infertile. Distinct from mice lacking ATR or TOPBP1 specifically during meiosis, Topbp1B5/B5 males exhibit normal chromosome synapsis and canonical markers of DNA repair in early prophase I. ATR signaling is mostly intact in Topbp1B5/B5 spermatocytes, although specific ATR-dependent events are disrupted, including localization of the RNA:DNA helicase Senataxin to chromatin loops of the XY. Strikingly, while Topbp1B5/B5 spermatocytes are able to initiate MSCI the completion of gene silencing is defective, with a subset of X chromosome genes displaying distinct patterns of transcriptional deregulation. These findings suggest a non-canonical role for the ATR-TOPBP1 signaling axis in XY silencing dynamics at advanced stages in pachynema. This is the first DDR mutant that separates XY silencing from sex body formation, as well as TOPBP1’s role in spermatogenesis from its roles in organismal viability.
Project description:During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.
Project description:During meiosis, germ cell and stage-specific components impose additional layers of regulation on the core cell cycle machinery to set up an extended G2 period termed meiotic prophase. In Drosophila males, meiotic prophase lasts 3.5 days, during which spermatocytes upregulate over 1800 genes and grow 25-fold. Previous work has shown that the cell cycle regulator Cyclin B (CycB) is subject to translational repression in immature spermatocytes, mediated by the RNA-binding protein Rbp4 and its partner Fest. Here, we show that the spermatocyte-specific protein Lut is required for translational repression of cycB in an 8-h window just before spermatocytes are fully mature. In males mutant for rbp4 or lut, spermatocytes enter and exit meiotic division 6-8 h earlier than in wild type. In addition, spermatocyte-specific isoforms of Syncrip (Syp) are required for expression of CycB protein in mature spermatocytes and normal entry into the meiotic divisions. Lut and Syp interact with Fest independent of RNA. Thus a set of spermatocyte-specific regulators choreograph the timing of expression of CycB protein during male meiotic prophase.
Project description:Regulation of the transcriptome to promote meiosis is important for sperm development and fertility. However, how chromatin remodeling directs the transcriptome during meiosis in male germ cells is largely unknown. Here, we demonstrate that the ISWI family ATP-dependent chromatin remodeling factor SMARCA5 (SNF2H) plays a critical role in regulating meiotic prophase progression during spermatogenesis. Males with germ cell-specific depletion of SMARCA5 are infertile and unable to form sperm. Loss of Smarca5 results in failure of meiotic progression with abnormal spermatocytes beginning at the pachytene stage and an aberrant global increase in chromatin accessibility, especially at genes important for meiotic prophase.
Project description:In meiotic prophase, chromosomes are organized into compacted loop arrays to promote homolog pairing and recombination. Here, we probe the architecture of the mouse spermatocyte genome in early and late meiotic prophase using Hi-C. We show that early-prophase chromosomes are arranged as linear arrays of 0.8-1 Mb loops, which extend to 1.5-2 Mb in late prophase as chromosomes compact and homologs undergo synapsis. Topologically associating domains (TADs) are lost in meiotic prophase, suggesting that assembly of the meiotic chromosome axis dramatically reduces the dynamics of chromosome-associated cohesin complexes. While TADs are lost, physically-separated A and B compartments are maintained in meiotic prophase. Moreover, meiotic DNA breaks and inter-homolog crossovers preferentially form in the gene-dense A compartment, revealing a role for chromatin organization in meiotic recombination. Finally, direct detection of inter-homolog contacts genome-wide reveals the structural basis for homolog alignment and juxtaposition by the synaptonemal complex.