HIV-1 Vpr targets PU.1 to vastly alter the antiviral machinery of HIV infected primary human macrophages
Ontology highlight
ABSTRACT: HIV-1 accessory protein, Vpr, is required for efficient HIV-1 infection of macrophages. Here we show that Vpr reprograms macrophage gene expression by altering the activity of master transcriptional regulator, PU.1, which is responsible for regulating the expression of host immune response genes and is necessary for normal hematopoiesis. In HIV-infected primary macrophages, Vpr-dependent changes in PU.1 levels result in suppression of known anti-viral targets of Vpr including IFITM3 and MRC1. Moreover, we find that PU.1 and its co-factor TET2 are co-recruited to DCAF1 by Vpr and targeted for accelerated degradation. Downmodulation of PU.1 is a highly conserved function of Vpr that is maintained across primate lentiviruses including HIV-2 and several SIVs. In contrast, this activity is not shared by the evolutionarily related accessory protein Vpx. Our findings demonstrate how Vpr dramatically enhances HIV spread in macrophages by targeting a myeloid-specific transcription factor needed for expression of multiple viral restriction factors.
ORGANISM(S): Homo sapiens
PROVIDER: GSE220574 | GEO | 2024/04/30
REPOSITORIES: GEO
ACCESS DATA