HIV-1 Vpr targets PU.1 to vastly alter the antiviral machinery of HIV infected primary human macrophages
Ontology highlight
ABSTRACT: HIV-1 accessory protein, Vpr, is required for efficient HIV-1 infection of macrophages. Here we show that Vpr reprograms macrophage gene expression by altering the activity of master transcriptional regulator, PU.1, which is responsible for regulating the expression of host immune response genes and is necessary for normal hematopoiesis. In HIV-infected primary macrophages, Vpr-dependent changes in PU.1 levels result in suppression of known anti-viral targets of Vpr including IFITM3 and MRC1. Moreover, we find that PU.1 and its co-factor TET2 are co-recruited to DCAF1 by Vpr and targeted for accelerated degradation. Downmodulation of PU.1 is a highly conserved function of Vpr that is maintained across primate lentiviruses including HIV-2 and several SIVs. In contrast, this activity is not shared by the evolutionarily related accessory protein Vpx. Our findings demonstrate how Vpr dramatically enhances HIV spread in macrophages by targeting a myeloid-specific transcription factor needed for expression of multiple viral restriction factors.
Project description:Viruses target host proteins for degradation to enhance their replication and transmission, and identifying these targets has provided key insights into the host-pathogen interaction1-3. Here, we use complementary unbiased mass spectrometry-based approaches to dissect the widespread proteomeic remodelling seen in HIV-1 infected T-cells. Remarkably, the HIV accessory protein Vpr is both necessary and sufficient to cause the vast majority of these changes. Protein regulation requires recruitment of the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex, and pulsed-Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC) and immunoprecipitation-mass spectrometry (IP-MS) identified at least 38 cellular proteins directly targeted for degradation by Vpr. Whilst other HIV-1 accessory proteins downregulate a small number of specific host factors, Vpr depletes multiple protein targets, causing systems-level changes to the cellular proteome. A subset of the novel cellular targets identified in this study are depleted by Vpr variants from across HIV-1/SIVcpz and other primate lentiviral lineages, confirming their biological importance in vivo.
Project description:Lentiviral accessory genes enhance replication through diverse mechanisms. HIV-1 accessory protein Vpr modulates the host DNA damage response (DDR) at multiple steps through DNA damage, cell cycle arrest, the degradation of host proteins, and both the activation and repression of DDR signaling. Vpr also alters host and viral transcription; however, the connection between Vpr-mediated DDR modulation and transcriptional activation remains unclear. Here, we determined the cellular consequences of Vpr-induced DNA damage using Vpr mutants that allow us to separate the ability of Vpr to induce DNA damage from cell cycle arrest and other DDR phenotypes including host protein degradation and repression of DDR. RNA-sequencing of cells expressing Vpr or Vpr mutants identified that Vpr alters cellular transcription through mechanisms both dependent and independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), Vpr-induced DNA damage activates the ATM-NEMO pathway and alters cellular transcription via NF-κB/RelA signaling. HIV-1 infection of primary MDMs validated Vpr-dependent NF-κB transcriptional activation during infection. Both virion delivered and de novo expressed Vpr induced DNA damage and activated ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional reprogramming can occur during early and late stages of viral replication. Together, our data identifies a mechanism by which Vpr activates NF-κB through DNA damage and the ATM-NEMO pathway, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral transcription and replication.
Project description:HIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune respone and cell signaling pathways. We used the microarray analysis to elucidate the differnetail expression pattern of differnet genes in human macrophages infected with HIV-1 Vpr. As result we found that HIV-1 Vpr protein leads to the induction of various interferon stimualted genes (ISGs) and chemokines in human macrophages. Human monocytes-derived macrophages (MDMs) were isolated from peripheral blood mononuclear cells (PBMCs) from two healthy donors and were infected with recombinant adenoviruses either expressing HIV-1 Vpr or ZsGreen1 as a control. At 48 hours post-infection, RNA was isolated and subjected to microarray analysis.
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. Using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Vpr) on the expression of miRNAs and mRNAs.
Project description:HIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune respone and cell signaling pathways. We used the microarray analysis to elucidate the differnetail expression pattern of differnet genes in human macrophages infected with HIV-1 Vpr. As result we found that HIV-1 Vpr protein leads to the induction of various interferon stimualted genes (ISGs) and chemokines in human macrophages.
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. Human fetal neurons were chosen to examine the impact of HIV-1 Vpr protein on gene expression
Project description:DCAF1, also known as VprBP (HIV-1-viral-protein-r-binding-protein), is an evolutionary conserved substrate-binding subunit of CRL4 (Cul4a-Ddb1-Roc1) ubiquitin ligase complex. It is a cellular protein targeted by HIV-1 viral protein R (Vpr). DCAF1 modulates cellular response against HIV in macrophages, controls the survival and reprogramming of oocyte, and regulates G2/M transition. DCAF1 functions through diverse mechanisms including regulating protein poly-ubiquitination, mono-ubiquitination and phosphorylation. Nonetheless, whether and how DCAF1 controls the function of primary T cell, a major cell type infected by HIV, remains unknown. We found DCAF1 is required for cell size growth and cell cycle entry from quiescence. To investigate the underlying molecular mechanisms and identify the cellular factors that associate with DCAF1 in T cells, we analyzed DCAF1-interacting proteins in T cells using VprBP immunoprecipitation and mass spectrometry.
Project description:Studies have shown that HIV-infected patients develop neurocognitive disorders characterized by neuronal dysfunction. The lack of productive infection of neurons by HIV suggests that viral and cellular proteins, with neurotoxic activities, released from HIV-1-infected target cells can cause this neuronal deregulation. The viral protein R (Vpr), a protein encoded by HIV-1, has been shown to alter the expression of various important cytokines and inflammatory proteins in infected and uninfected cells; however the mechanisms involved remain unclear. Using a human neuronal cell line, we found that Vpr can be taken up by neurons causing: (i) deregulation of calcium homeostasis, (ii) endoplasmic reticulum-calcium release, (iii) activation of the oxidative stress pathway, (iv) mitochondrial dysfunction and v- synaptic retraction. In search for the cellular factors involved, we performed microRNAs and gene array assays using human neurons (primary cultures or cell line, SH-SY5Y) that we treated with recombinant Vpr proteins. Interestingly, Vpr deregulates the levels of several microRNAs (e.g. miR-34a) and their target genes (e.g. CREB), which could lead to neuronal dysfunctions. Therefore, we conclude that Vpr plays a major role in neuronal dysfunction through deregulating microRNAs and their target genes, a phenomenon that could lead to the development of neurocognitive disorders. Human neurons SH-SY5Y were chosen to examine the impact of HIV-1 Vpr protein on gene expression
Project description:Although HIV-1 can directly infect resting CD4+ T cells, virus replication in resting CD4+T cells is very inefficient owing to the different host restriction factors blocking viral replication. The accessory protein Vpx from the major simian immunodeficiency virus (SIV) of rhesus macaque (mac) and HIV-2 lineage could degrade a host restriction factor, SAM and HD domain containing protein 1 (SAMHD1), to facilitate HIV reverse transcription. Interestingly, Vpx proteins from a second SIV lineage, the SIV of redcapped mangabeys or mandrills (SIVrcm/nmd-2), had no effect on SAMHD1 and did not affect the dNTP pool, but strongly increased HIV-1 infection in resting CD4+ T cells although not in primary macrophages. This indicates that Vpx, in addition to SAMHD1,can overcome a previously unexplored restriction factor for lentiviruses. Here to identify this potential restriction factor, we examined Vpxrcm-interacting cellular proteins and found that keratin 72 (KRT72), an intermediate filament protein that is exclusively expressed in resting CD4+ T cells, is a new host antiviral factor targeted by Vpx. Other than Vpx from SIV mac and HIV-2, the Vpxrcm/nmd-2 lineage, which had no effect on the SAMHD1 protein, could strongly promote the degradation of KRT72, resulting in enhanced HIV-1 infection in resting CD4+ T cells. Furthermore, we discovered that KRT72 restricts HIV-1 replication by sequestering incoming HIV-1 capsids in cytoplasmic intermediate filaments (IFs). In the presence of KRT72, HIV-1 capsid cores become attached to the IF and their trafficking toward the nucleus is inhibited. In contrast, in the absence of KRT72, HIV-1 capsids are transported into the nucleus,leading to high levels of integrated HIV-1 DNA. In addition, KRT72 expression was substantially higher in resting CD4+ T cells than in activated CD4+ T cells, and it was rapidly reduced by T cell activation. Collectively, the results show that KRT72 is a new Vpx-counteracted host antiviral factor that acts to tether incoming capsids to the cytoplasmic IF, thereby restricting HIV-1 infection in resting CD4+ T cells.
Project description:Analysis of gene expression in primary CD4 T cells of multiple donors, following in vitro HIV-1 infection. Gene expression was measured at 4.5, 8, 12, 24 and 48h post infection and compared to mock-infected and HIV-1 delta-Env infected cells to determine and categorise the temporal expression profiles of genes affected by HIV-1 infection. Additional experiments determined: 1) the degree to which the accessory viral protein Vpr is responsible for the observed transcriptomic changes, 2) the effect of varying the viral strain, 3) the effect on the transcriptome of specifically memory CD4 T cells, the primary target cell subtype of HIV-1, in comparison with bulk CD4 T cells, and 4) the effect of blocking the Interferon alpha/beta receptor 2 during HIV-1 infection.