Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice
Ontology highlight
ABSTRACT: PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease. We have previously shown that human induced pluripotent stem cell (iPSC)-derived astrocytes carrying PSEN1 ΔE9 mutation exhibit transcriptional and functional abnormalities (Stem Cell Reports. 2017;9:1885-1897). Here we injected glial progenitors derived from 2 pairs of PSEN1 ΔE9 mutant- isogenic CTRL iPSCs intracerebroventricularly into newborn mice. At the age of 18 months, mouse hippocampi containing human cells (5 x PSEN1 ΔE9 + 6 x CTRL, all from male mice) were quickly dissected out and bulk RNA sequencing analysis was performed. Our results shed more light on the efffect of PSEN1 ΔE9 mutation on human glia in vivo as well as on the effect of the presence of mutant human glia on the surrounding healthy mouse cells.
Project description:Alzheimer’s disease (AD) is the most common neurodegenerative dementia. Around 10% of cases present an age of onset before 65 years-old, which in turn can be divided in monogenic or familial AD (FAD) and sporadic early-onset AD (EOAD). Mutations in PSEN1, PSEN2 and APP genes have been linked with FAD. The aim of our study was to describe the brain whole-genome RNA expression profile of the posterior cingulate area in EOAD and FAD caused by PSEN1 mutations (FAD-PSEN1). 14 patients (7 EOAD and 7 FAD-PSEN1) and 7 neurologically healthy controls were selected and samples were hybridized in a Human Gene 1.1 microarray from Affymetrix. When comparing controls with EOAD and controls with FAD-PSEN1, we found 3183 and 3351 differentially expressed genes (DEG) respectively (FDR corrected p<0.05). However, any DEG was found in the comparison of the two groups of patients. Microarrays were validated through quantitative-PCR of 17 DEG. In silico analysis of the DEG revealed an alteration in biological pathways related to calcium-signaling, axon guidance and long-term potentiation (LTP), among others, in both groups of patients. These pathways are mainly related with cell signalling cascades, synaptic plasticity and learning and memory processes. In conclusion, the altered biological final pathways in EOAD and FAD-PSEN1 are highly coincident. Also, the findings are in line with those previously reported for late-onset AD (LOAD, onset >65 years-old), which implies that the consequences of the disease at the molecular level are similar in the final stages of the disease. 21 Samples were analyzed: 7 controls, 7 Early-onset Alzheimer's disease (AD) patients and 7 early-onset AD genetically determined by a mutation in PSEN1 gene.
Project description:The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
Project description:Alzheimer’s disease (AD) is the most common neurodegenerative dementia. Around 10% of cases present an age of onset before 65 years-old, which in turn can be divided in monogenic or familial AD (FAD) and sporadic early-onset AD (EOAD). Mutations in PSEN1, PSEN2 and APP genes have been linked with FAD. The aim of our study was to describe the brain whole-genome RNA expression profile of the posterior cingulate area in EOAD and FAD caused by PSEN1 mutations (FAD-PSEN1). 14 patients (7 EOAD and 7 FAD-PSEN1) and 7 neurologically healthy controls were selected and samples were hybridized in a Human Gene 1.1 microarray from Affymetrix. When comparing controls with EOAD and controls with FAD-PSEN1, we found 3183 and 3351 differentially expressed genes (DEG) respectively (FDR corrected p<0.05). However, any DEG was found in the comparison of the two groups of patients. Microarrays were validated through quantitative-PCR of 17 DEG. In silico analysis of the DEG revealed an alteration in biological pathways related to calcium-signaling, axon guidance and long-term potentiation (LTP), among others, in both groups of patients. These pathways are mainly related with cell signalling cascades, synaptic plasticity and learning and memory processes. In conclusion, the altered biological final pathways in EOAD and FAD-PSEN1 are highly coincident. Also, the findings are in line with those previously reported for late-onset AD (LOAD, onset >65 years-old), which implies that the consequences of the disease at the molecular level are similar in the final stages of the disease.
Project description:Genome wide DNA methylation profiling of normal and APP/PSEN1 mice. A custom Illumina Golden Gate DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 800 CpGs. Bisulphite converted DNA from the 96 samples were hybridised to the Illumina custom golden gate DNA methylation array.
Project description:Lysosomal dysfunction is considered pathogenic in Alzheimer Disease (AD). Loss of Presenilin-1(PSEN1) function causing early onset AD impedes acidification via defective vATPase V0a1 subunit delivery to lysosomes. We report that isoproterenol and related β2-adrenergic agonists re-acidify lysosomes in PSEN1 KO cells and fibroblasts from PSEN1 familial AD(FAD) patients, restores lysosomal calcium homeostasis and proteolysis, and reverses impaired autophagy flux. We identify a novel rescue mechanism involving PKA-mediated facilitated delivery of ClC-7 to lysosomes, which stimulates chloride influx and reverses markedly lowered Cl- content of PSEN1 KO lysosomes. Notably, PSEN1 loss-of-function impedes ER-to-lysosome delivery of ClC-7, thus accounting for lysosomal Cl- deficits that compound pH deficits due to deficient vATPase function. Transcriptomics of PSEN1-deficient cells reveal strongly down-regulated ER-to-lysosome transport pathways and reversibility by isoproterenol. Our findings uncover a broadened PSEN1 role in lysosomal ion homeostasis and novel pH modulation of lysosomes through β-adrenergic regulation of ClC-7, which can be therapeutically modulated.
Project description:Endothelial cells were isolated by flow cytometry using a specific marker (CD31) and their global gene expression profile was analyzed. CD11b marker was contraselected. This data were used to study molecular mechanisms implicated in endothelial cells from App/Psen1 mouse model. In this dataset, we include the expression data obtained in endothelial cells from APP/Psen1 (18 month-old) mouse model using a specific marker for this cell type (CD31+). Functional enrichment analyses were carried out through GSEA, where we have included specific categories potentially involved with blood vessel formation.
Project description:Short RNA sequencing of post-mortem human hippocampi from the Calgary Brain Bank. The dataset includes patients with Alzheimer's disease (AD) and healthy control individuals (Ctrl).
Project description:Genome wide DNA methylation profiling of normal and APP/PSEN1 mice. A custom Illumina Golden Gate DNA methylation Beadchip was used to obtain DNA methylation profiles across approximately 800 CpGs.