Project description:Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance informs therapeutic strategies to effectively reprogram and reverse acquired resistance.
Project description:A number of immunotherapies, in particular immune checkpoint targeting antibodies and adoptive T-cell therapies, are starting to transform the treatment of advanced cancers. The likelihood to respond to these immunotherapies differs strongly across tumor types, with response rates for checkpoint targeting being the highest in advanced melanoma, renal cell cancer and non-small cell lung cancer. However, also non-responsiveness is observed, indicating the presence of intrinsic resistance or naturally acquired resistance. In addition, a subgroup of patients that do initially respond to immunotherapy will later recur, thereby also pointing towards a role of therapy-induced acquired resistance. Here, we review our current understanding of both intrinsic and acquired resistance mechanisms in cancer immunotherapy, and discuss potential strategies to overcome them.
Project description:HD and control patient-derived induced pluripotent stem cells were used to generate medium spiny neuron-like cells. Three control in triplicate, one control in duplicate, one HD samples with CAG repeat length in typical adult onset range in triplicate and one in duplicate, and five HD samples with CAG repeat length in typical juvenile onset range in triplicate were differentiated as biological growth replicate (separate differentiations) into medium spiny neuron-like cells. Total RNA was isolated using the Qiagen RNeasy Kit and QIAshredders for cell lysis. 1 µg of RNA with RIN values >9 were used for library preparation using the strand specific Illumina TruSeq Total RNA protocol. Libraries were sequenced on the HiSeq 2500 using 100 cycles to obtain paired-end 100 reads at >50M reads per sample.
Project description:The assay for transposase-accessible chromatin using sequencing (ATAC-seq) provides a simple and scalable way to detect the unique chromatin landscape associated with a cell type and how it may be altered by perturbation or disease. ATAC-seq requires a relatively small number of input cells and does not require a priori knowledge of the epigenetic marks or transcription factors governing the dynamics of the system. Here we describe an updated and optimized protocol for ATAC-seq, called Omni-ATAC, that is applicable across a broad range of cell and tissue types. The ATAC-seq workflow has five main steps: sample preparation, transposition, library preparation, sequencing and data analysis. This protocol details the steps to generate and sequence ATAC-seq libraries, with recommendations for sample preparation and downstream bioinformatic analysis. ATAC-seq libraries for roughly 12 samples can be generated in 10 h by someone familiar with basic molecular biology, and downstream sequencing analysis can be implemented using benchmarked pipelines by someone with basic bioinformatics skills and with access to a high-performance computing environment.