Differential gene expression in Roseburia inulinivorans grown on inulin and starch
Ontology highlight
ABSTRACT: Roseburia inulinivorans is a recently identified motile representative of the Firmicutes that contributes to butyrate formation from a variety of dietary polysaccharide substrates in the human large intestine. Microarray analysis was used here to investigate substrate-driven gene expression changes in R. inulinivorans A2-194. A cluster of fructo-oligosaccharide (FOS)/inulin utilisation genes induced during growth on inulin included one encoding a b-fructofuranosidase protein that was prominent in the proteome of inulin-grown cells. This cluster also included a 6-phosphofructokinase and an ABC transport system, while a distinct inulin-induced 1-phosphofructokinase was linked to a fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS II transport enzyme). Real-time PCR analysis demonstrated that the b-fructofuranosidase and adjacent ABC transport protein showed greatest induction during growth on inulin, whereas the 1-phosphofructokinase enzyme and linked PTS II transport system were most strongly up-regulated during growth on fructose, indicating that these two clusters play distinct roles in the utilization of inulin. The R. inulinivorans B-fructofuranosidase was over-expressed in E. coli and shown to hydrolyse fructans ranging from inulin down to sucrose, with greatest activity on fructo-oligosacharides. Genes induced on starch included the major extra-cellular a-amylase and two distinct a-glucanotransferases together with a gene encoding a flagellin protein. The latter response may be concerned with improving bacterial access to insoluble starch particles.
ORGANISM(S): Roseburia inulinivorans DSM 16841 Roseburia inulinivorans
PROVIDER: GSE22245 | GEO | 2010/07/24
SECONDARY ACCESSION(S): PRJNA128757
REPOSITORIES: GEO
ACCESS DATA