Activity-dependent gene regulations in PV+ interneurons
Ontology highlight
ABSTRACT: Neuronal activity is regulated in a narrow permissive band for the proper operation of biological neural networks. Changes in synaptic connectivities and network processes during key cognitive activity such as learning might disturb this balance, eliciting compensatory mechanisms to maintain network function1–3. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilising plasticity. However, while neuronal plasticity has been thoroughly studied in pyramidal cells4–8, comparatively little is known about how interneurons adapt to ongoing changes in their activity. Here we uncover critical cellular and molecular mechanisms underlying homeostatic regulation of parvalbumin-expressing (PV+) interneurons activity in mouse neocortex. We found that changes in the activity of PV+ interneurons drive cell-autonomous, bi-directional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNAs revealed that increasing the activity of PV+ interneurons leads to the cell-autonomous upregulation of Vgf, a gene encoding multiple neuropeptides. Functional experiments conclusively point towards the role VGF in mediating activity-dependent scaling of inhibitory synapses in PV+ interneurons. Our findings reveal an instructive role for VGF in regulating the connectivity among PV+ interneurons in the adult neocortex.
Project description:We developed an affinity purification approach to isolate tagged nuclei in mice (similar to INTACT; [Deal R.B. and Henikoff S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18,1030-1040. (2010)]) and used it to characterize genome-wide patterns of transcription, DNA methylation, and chromatin accessibility in 3 major neuron classes of the neocortex (excitatory pyramidal neurons, parvalbumin (PV)-positive GABAergic interneurons, and vasoactive intestinal peptide (VIP)-positive GABAergic interneurons). By combining cell purification and integrative analysis, our findings relate the phenotypic and functional complexity of neocortical neurons to their underlying transcriptional and epigenetic diversity. RNA-seq, MethylC-seq, ATAC-seq, and ChIP-seq for histone modifications using INTACT-purified nuclei from the mouse neocortex
Project description:The goal of this project was to assess how alternative splicing programs are arrayed across neuronal cells types. We systematically mapped ribosome-associated transcript isoforms in genetically-defined neuron types of the mouse forebrain. The endogenous ribosomal protein Rpl22 was conditionally HA-tagged in glutamatergic neurons (using CamK2-cre for most neocortical pyramidal cells and Scnn1a-cre for spiny stellate and star pyramid layer 4 cells), and GABAergic interneurons [with somatostatin-cre (SST), parvalbumin-cre (PV) and vasointestinal peptide-cre (VIP)]. Within the hippocampus, we further targeted Cornu ammonis 1 (CA1) neurons (CamK2-cre), CA3 neurons (Grik4-cre), and SST-positive interneurons (SST-cre). Four replicates were deep sequenced (~100 million reads) using an Illumina platform. We find that neuronal transcript isoform profiles reliably distinguish even closely-related classes of pyramidal cells and inhibitory interneurons in the mouse hippocampus and neocortex, positing transcript diversification by alternative splicing as a central mechanism for the functional specification of neuronal cell types and circuits.
Project description:Mutations in the solute carrier family 6-member 8 (Slc6a8) gene, encoding the protein responsible for cellular creatine (Cr) uptake, cause Creatine Transporter Deficiency (CTD), an X-linked neurometabolic disorder presenting with intellectual disability, autistic-like features, and epilepsy. The pathological determinants of CTD are still poorly understood, hindering the development of therapies. In this study, we generated an extensive transcriptomic profile of CTD showing that Cr deficiency causes perturbations of gene expression in excitatory neurons, inhibitory cells, and oligodendrocytes which result in remodeling of circuit excitability and synaptic wiring. We also identified specific alterations of parvalbumin-expressing (PV+) interneurons, exhibiting a reduction in cellular and synaptic density, and a hypofunctional electrophysiological phenotype. Mice lacking Slc6a8 only in PV+ interneurons recapitulated numerous CTD features, including cognitive deterioration, impaired cortical processing and hyperexcitability of brain circuits, demonstrating that Cr deficit in PV+ interneurons is sufficient to determine the neurological phenotype of CTD. Moreover, a pharmacological treatment targeted to restore the efficiency of PV+ synapses significantly improved cortical activity in Slc6a8 knock-out animals. Altogether, these data demonstrate that Slc6a8 is critical for the normal function of PV+ interneurons and that impairment of these cells is central in the disease pathogenesis, suggesting a novel therapeutic venue for CTD.
Project description:We developed an affinity purification approach to isolate tagged nuclei in mice (similar to INTACT; [Deal R.B. and Henikoff S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18,1030-1040. (2010)]) and used it to characterize genome-wide patterns of transcription, DNA methylation, and chromatin accessibility in 3 major neuron classes of the neocortex (excitatory pyramidal neurons, parvalbumin (PV)-positive GABAergic interneurons, and vasoactive intestinal peptide (VIP)-positive GABAergic interneurons). By combining cell purification and integrative analysis, our findings relate the phenotypic and functional complexity of neocortical neurons to their underlying transcriptional and epigenetic diversity.
Project description:While studies have shown that there are rhythms in gene expression in the prefrontal cortex (PFC), the contribution of different cell types and potential variation by sex has not been determined. Of particular interest are excitatory pyramidal cells and inhibitory parvalbumin (PV) interneurons, as interactions between these cell types are essential for maintaining the excitation/inhibition balance. Here, we identify cell-type specific rhythms in the translatome of PV and pyramidal cells in the mouse PFC and assess rhythms in PV cell electrophysiology. We find that while core molecular clock genes are conserved and synchronized between cell types, pyramidal cells have nearly twice as many rhythmic transcripts as PV cells (35% vs. 18%). Rhythmic transcripts in pyramidal cells also show a high degree of overlap between sexes, whereas in PV cells, rhythmic transcripts are largely distinct between sexes. Additionally, we find sex-specific effects of phase on action potential properties in PV cells. This study demonstrates that rhythms in gene expression and electrophysiological properties in the PFC vary by both cell type and sex. Moreover, the biological processes associated with rhythmic transcripts may provide insight into the unique functions of rhythms in these cells, as well as their selective vulnerabilities to circadian disruption.
Project description:Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition which is essential for neuronal computation. Deviations from a balanced state have been linked to neurodevelopmental disorders and severe disruptions result in epilepsy. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here, we identified a signaling pathway in the adult mouse neocortex that is activated in response to elevated neuronal network activity. Over-activation of excitatory neurons is signaled to the network through the elevation of BMP2, a growth factor well-known for its role as morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of peri-neuronal nets. PV interneuron-specific disruption of BMP2-SMAD1 signaling is accompanied by a loss of PV cell glutamatergic innervation, underdeveloped peri-neuronal nets, and decreased excitability. Ultimately, this impairment of PV interneuron functional recruitment disrupts cortical excitation – inhibition balance with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signaling is re-purposed to stabilize cortical networks in the adult mammalian brain.
Project description:Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition which is essential for neuronal computation. Deviations from a balanced state have been linked to neurodevelopmental disorders and severe disruptions result in epilepsy. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here, we identified a signaling pathway in the adult mouse neocortex that is activated in response to elevated neuronal network activity. Over-activation of excitatory neurons is signaled to the network through the elevation of BMP2, a growth factor well-known for its role as morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of peri-neuronal nets. PV interneuron-specific disruption of BMP2-SMAD1 signaling is accompanied by a loss of PV cell glutamatergic innervation, underdeveloped peri-neuronal nets, and decreased excitability. Ultimately, this impairment of PV interneuron functional recruitment disrupts cortical excitation – inhibition balance with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signaling is re-purposed to stabilize cortical networks in the adult mammalian brain.
Project description:Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition which is essential for neuronal computation. Deviations from a balanced state have been linked to neurodevelopmental disorders and severe disruptions result in epilepsy. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here, we identified a signaling pathway in the adult mouse neocortex that is activated in response to elevated neuronal network activity. Over-activation of excitatory neurons is signaled to the network through the elevation of BMP2, a growth factor well-known for its role as morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of peri-neuronal nets. PV interneuron-specific disruption of BMP2-SMAD1 signaling is accompanied by a loss of PV cell glutamatergic innervation, underdeveloped peri-neuronal nets, and decreased excitability. Ultimately, this impairment of PV interneuron functional recruitment disrupts cortical excitation – inhibition balance with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signaling is re-purposed to stabilize cortical networks in the adult mammalian brain.
Project description:Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition which is essential for neuronal computation. Deviations from a balanced state have been linked to neurodevelopmental disorders and severe disruptions result in epilepsy. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here, we identified a signaling pathway in the adult mouse neocortex that is activated in response to elevated neuronal network activity. Over-activation of excitatory neurons is signaled to the network through the elevation of BMP2, a growth factor well-known for its role as morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of peri-neuronal nets. PV interneuron-specific disruption of BMP2-SMAD1 signaling is accompanied by a loss of PV cell glutamatergic innervation, underdeveloped peri-neuronal nets, and decreased excitability. Ultimately, this impairment of PV interneuron functional recruitment disrupts cortical excitation – inhibition balance with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signaling is re-purposed to stabilize cortical networks in the adult mammalian brain.
Project description:People with schizophrenia show hyperactivity in the ventral hippocampus (vHipp) and we have previously demonstrated distinct behavioral roles for vHipp cell populations. Here, we test the hypothesis that parvalbumin (PV) and somatostatin (SST) interneurons differentially innervate and regulate hippocampal pyramidal neurons based on their projection target. First, we use eGRASP to show that PV-positive interneurons form a similar number of synaptic connections with pyramidal cells regardless of their projection target while SST-positive interneurons preferentially target nucleus accumbens (NAc) projections. To determine if these anatomical differences result in functional changes, we used in vivo opto-electrophysiology to show that SST cells also preferentially regulate the activity of NAc-projecting cells. These results suggest vHipp interneurons differentially regulate that vHipp neurons that project to the medial prefrontal cortex (mPFC) and NAc. Characterization of these cell populations may provide potential molecular targets for the treatment schizophrenia and other psychiatric disorders associated with vHipp dysfunction.