Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models
Ontology highlight
ABSTRACT: Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing transmission of SARS-CoV-2. We found that a single intranasal dose of serotype 5-based adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) secretory and serum anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and in respiratory secretions, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of wild-type mice from a challenge with the SARS-CoV-2 beta variant. Our data confirm and extend previous studies reporting promising preclinical results on vector-based intranasal SARS-CoV-2 vaccination, and support the potential of this approach to elicit mucosal immunity for preventing reinfection and transmission of SARS-CoV-2 more effectively than the currently available vaccines.
ORGANISM(S): Mus musculus
PROVIDER: GSE223476 | GEO | 2023/05/01
REPOSITORIES: GEO
ACCESS DATA