Project description:In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal central nervous system infection, is associated with an increased risk of autism and schizophrenia in affected offspring. The cell types mediating the response of the fetal brain to maternal inflammation are largely unknown, hindering the development of therapies to prevent and treat adverse neuropsychiatric outcomes. Here, we show that microglia are enriched for expression of receptors for relevant pathogens and cytokines throughout embryonic development.
Project description:In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal central nervous system infection, is associated with an increased risk of autism and schizophrenia in affected offspring. The cell types mediating the response of the fetal brain to maternal inflammation are largely unknown, hindering the development of therapies to prevent and treat adverse neuropsychiatric outcomes. Here, we show that microglia are enriched for expression of receptors for relevant pathogens and cytokines throughout embryonic development.