Phase Separation Modulates DNA Guanine Quadruplex Formation in vitro and in cells
Ontology highlight
ABSTRACT: In the presence of monovalent alkali metal ions, G-rich DNA sequences containing four runs of contiguous guanines can fold into G-quadruplex (G4) structures. Recent studies showed that these structures are located in critical regions of the human genome and assume important functions in many essential DNA metabolic processes, including replication, transcription and repair. However, not all potential G4-forming sequences are actually folded into G4 structures in cells, where G4 structures are known to be dynamic and modulated by G4-binding proteins as well as helicases. It remains unclear whether there are other factors influencing the formation and stability of G4 structures in cells. Herein, we showed that DNA G4s can undergo phase separation in vitro. In addition, immunofluorescence microscopy and ChIP-Seq experiments with the use of BG4, a G4 structure-specific antibody, revealed that disruption of phase separation in cells could result in global destabilization of G4 structures. Together, our work revealed phase separation as a new determinant in regulating the formation and stability of G4 structures in human cells.
ORGANISM(S): Homo sapiens
PROVIDER: GSE225772 | GEO | 2023/07/05
REPOSITORIES: GEO
ACCESS DATA