RpdD and RpoS ChIP-exo in Klebsiella pneumoniae
Ontology highlight
ABSTRACT: With increasingly concerning strains of antimicrobial resistant strains of the commensal, gram-negative bacteria Klebsiella pneumoniae emerging, there is a pressing need to better understand the pathogen and mechanisms behind its pathogenicity. This study investigated the regulatory mechanisms in strain MGH 78578 of two major sigma factors, the house-keeping sigma factor RpoD, and the general stress response sigma factor RpoS, in mid-exponential and early stationary phase using chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) followed by deep sequencing. Combining ChIP-exo and transcriptome analysis allowed for the determination of sigma factor binding sites, binding motifs, and genes included in the phase-specific sigmulons. The number of genes included in the RpoS sigmulon was greater than in the RpoD sigmulon, with 1,833 and 1,690 genes included, respectively; however, a majority of sigmulon genes were found in all phase-specific sigmulons. Focussing on pathogenicity genes, 20 antimicrobial resistance genes (ARGs) and 155 virulence genes, only two ARGs were found exclusively in one phase-specific sigmulon, an oxacillin-hydrolysing class D beta-lactamase and chloramphenicol efflux MFS transporter CmlA5, which were found in the RpoD sigmulon in early stationary phase. Notably, six unnamed proteins that are or pertain to fimbrial proteins were found uniquely in the RpoS sigmulon in early stationary phase. From this, it can be hypothesised that early stationary phase might be an important phase for pathogenicity gene regulation. While there is little conservation in RpoS sigmulons from strain to strain, RpoS appears to have a consistent overarching role across strains, including a role as a regulator of pathogenicity genes.
ORGANISM(S): Klebsiella pneumoniae
PROVIDER: GSE226119 | GEO | 2025/02/24
REPOSITORIES: GEO
ACCESS DATA