The complex etiology of autism spectrum disorder due to missense mutations of CHD8
Ontology highlight
ABSTRACT: CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.
Project description:Chromodomain helicase DNA-binding 8 (CHD8) is one of the most frequently mutated genes causative of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly and hence implicates cortical abnormalities in this form of ASD, the neurodevelopmental impact of human CHD8 haploinsufficiency remains unexplored. Here we combined human cerebral organoids and single cell transcriptomics to define the effect of ASD-linked CHD8 mutations on human cortical development. We found that CHD8 haploinsufficiency causes a major disruption of neurodevelopmental trajectories with an accelerated generation of inhibitory neurons and a delayed production of excitatory neurons alongside the ensuing protraction of the proliferation phase. This imbalance may contribute to the significant enlargement of cerebral organoids in line with the macrocephaly observed in patients with CHD8 mutations. By adopting an isogenic design of patient-specific mutations and mosaic cerebral organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Finally, our results assign different CHD8-dependent molecular defects to particular cell types, pointing to an abnormal and extended program of proliferation and alternative splicing specifically affected in, respectively, the radial glial and immature neuronal compartments. By identifying temporally restricted cell-type specific effects of human CHD8 mutations, our study uncovers developmental alterations as reproducible endophenotypes for neurodevelopmental disease modelling.
Project description:Whole-exome sequencing studies have implicated chromatin modifiers and transcriptional regulators in autism spectrum disorder (ASD) through the identification of de novo loss of function mutations in affected individuals. Many of these genes are co-expressed in mid-fetal human cortex, suggesting ASD risk genes converge in regulatory networks that are perturbed in ASD during neurodevelopment. To elucidate such networks we mapped promoters and enhancers bound by the chromodomain helicase CHD8, which is strongly enriched in ASD-associated de novo loss of function mutations, using ChIP-seq in mid-fetal human brain, human neural stem cells (hNSCs), and embryonic mouse cortex. We find that CHD8 targets are strongly enriched for ASD risk genes that converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in significant dysregulation of ASD risk genes targeted by CHD8, as well as additional genes important for neurodevelopment, including members of the Wnt/M-NM-2-catenin signaling pathway. Integration of CHD8 binding data with genetic and gene co-expression data in ASD risk models provides support for additional ASD risk genes. Together, our results suggest that loss of CHD8 function contributes to ASD through regulatory perturbation of other ASD risk genes during human cortical development. Two biological replicates for each ChIP with appropriate Input control Four biological replicates for each condition in knockdown experiments (Ctrl construct, Chd8 target C, and Chd8 target G)
Project description:Loss-of-function mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are strongly associated with Autism Spectrum Disorders (ASD). Indeed, the reduction of CHD8 causes transcriptional, epigenetic and cellular phenotypic changes, correlated to disease that can be monitored in assessing new therapeutic approaches. SINEUPs are a functional class of natural and synthetic antisense long non-coding RNAs able to stimulate the translation of antisense target mRNA, with no effect on transcription. Here we employed synthetic SINEUP-CHD8 targeting the first and third AUG of the CHD8 coding sequence to efficiently stimulate endogenous CHD8 protein production. SINEUP-CHD8 were effective in cells with reduced levels of the target protein and in patients’-derived fibroblasts with CHD8 mutations. Functionally, SINEUP-CHD8 were able to revert molecular phenotypes associated with CHD8-suppression, i.e. genome-wide transcriptional dysregulation, and the reduction of H3K36me3 levels. Strikingly, in chd8-morpholino-treated and ENU mutant zebrafish embryos, SINEUP-chd8 injection confirmed the ability of SINEUP RNA to rescue the chd8-suppression-induced macrocephaly phenotype and neuronal hyperproliferation. Thus, SINEUP-CHD8 molecule(s) represent a proof-of-concept towards the development of a novel RNA-based therapy for neurodevelopmental syndromes with implications for, and beyond ASD, and relevant to genetic disorders caused by protein haploinsufficiency.
Project description:Sequencing studies of autism spectrum disorder (ASD) cases have revealed a causal role for mutations to chromatin remodeling genes. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeler with one of the highest de novo mutation rates in sporadic ASD. However, the relationship between CHD8 genomic function and autism-relevant biology remains poorly elucidated. CHD8 binding studies have relied on Chromatin Immunoprecipitation followed by sequencing (ChIP-seq), but these datasets exhibit significant variation. ChIP-seq has technical limitations in the context of weak or indirect protein-DNA interactions or when high-performance antibodies are unavailable. Thus, complementary approaches are needed to establish CHD8 genomic targets. Here we used Targeted DamID in utero to characterize CHD8 binding activity in the developing embryonic mouse cortex. CHD8 Targeted DamID followed by sequencing (CHD8 TaDa-seq) revealed binding at previously identified genomic targets as well as at genes sensitive to Chd8 haploinsufficiency. CHD8 TaDa-seq showed greater sensitivity for CHD8 binding near a subset of genes specific to brain development and neuron function. These studies establish TaDa-seq as a useful alternative for mapping protein-DNA interactions in vivo and provide insights into the relationship between chromatin remodeling by CHD8 and autism-relevant pathophysiology associated with CHD8 mutations.
Project description:CHD8 (chromodomain helicase DNA binding protein 8), which codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, is the most commonly mutated gene in autism spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also been found in schizophrenia (SZ) and intellectual disabilities, and affects cancer cell proliferation. To better understanding the molecular links between CHD8 functions and ASD, we have applied the CRISPR/Cas9 technology to knockout (KO) one copy of CHD8 in induced pluripotent stem cells (iPSCs) and build cerebral organoids, a model for the developing telencephalon. RNA-seq was carried out on KO organoids (CHD8+/-) and isogenic controls (CHD8+/+). Differentially expressed genes (DEGs) revealed an enrichment of genes involved in neurogenesis, forebrain development, Wnt/β-catenin signaling and axonal guidance. The SZ and bipolar disorder (BD) candidate gene TCF4 was significantly upregulated. Our CHD8 KO DEGs were significantly overlapped with those found in a transcriptome analysis using cerebral organoids derived from a family with idiopathic ASD and another transcriptome study using iPS cell-derived neurons from patients with BD, a condition characterized in a subgroup of patients by dysregulated WNT/β-catenin signaling. Overall, the findings show that distinct ASD, SZ and BD candidate genes converge on common molecular targets - an important consideration for developing novel therapeutics in genetically heterogeneous complex traits.
Project description:Truncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (pM-BM- =M-BM- 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. ChIP-seq for CHD8 using three different antibodies, and the related protein CHD7, in human iPSC-derived NPCs treated with shRNA targeting GFP (which were used as control cells for an shRNA knockdown RNA-seq experiment that was part of the overall study)
Project description:Truncating mutations of CHD8, encoding a chromodomain helicase, and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA-seq) with genome-wide CHD8 binding (ChIP-seq). Suppressing CHD8 to levels comparable with loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8 binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (p = 1.01x10-9) and CHD8-bound genes (p = 4.34x10-3), which align with previously identified co-expression modules during fetal development. We also find an intriguing enrichment of cancer related gene-sets among CHD8-bound genes (p < 1.9x10-11). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis. RNA-seq in NPCs treated with shRNAs targeting CHD8. For controls, NPCs were treated with shRNAs targeting GFP and LacZ. Infection and sequencing was carried out in two separate batches, with one GFP and one LacZ sample in each batch. All samples were sequenced in two technical replicates.
Project description:Whole-exome sequencing studies have implicated chromatin modifiers and transcriptional regulators in autism spectrum disorder (ASD) through the identification of de novo loss of function mutations in affected individuals. Many of these genes are co-expressed in mid-fetal human cortex, suggesting ASD risk genes converge in regulatory networks that are perturbed in ASD during neurodevelopment. To elucidate such networks we mapped promoters and enhancers bound by the chromodomain helicase CHD8, which is strongly enriched in ASD-associated de novo loss of function mutations, using ChIP-seq in mid-fetal human brain, human neural stem cells (hNSCs), and embryonic mouse cortex. We find that CHD8 targets are strongly enriched for ASD risk genes that converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in significant dysregulation of ASD risk genes targeted by CHD8, as well as additional genes important for neurodevelopment, including members of the Wnt/β-catenin signaling pathway. Integration of CHD8 binding data with genetic and gene co-expression data in ASD risk models provides support for additional ASD risk genes. Together, our results suggest that loss of CHD8 function contributes to ASD through regulatory perturbation of other ASD risk genes during human cortical development.
Project description:Disruptive mutations in the chromodomain helicase DNA binding protein 8 (CHD8) have been recurrently associated with Autism Spectrum Disorders (ASD). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 408 genes implicated in “regulation of RNA splicing”, “mRNA catabolic process”. Interestingly, mass-spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator Heterogeneous Nuclear Ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain CHD8-suppression splicing phenotype, partially implicating SETD2, H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.