An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance
Ontology highlight
ABSTRACT: The Hippo pathway is a key growth-control pathway conserved across species. The downstream effectors of the Hippo pathway YAP/TAZ are frequently activated in cancer cells by a diverse array of mechanisms to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs are central to their transcriptional activities, we discovered a potent small molecule inhibitor (SMI) GNE-7883 that allosterically blocks the interactions between YAP/TAZ and all four TEAD paralogs in human cells through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models, and achieved strong anti-tumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes resistance to the recently approved KRAS G12C inhibitor sotorasib in both treatment-refractory and acquired resistance cell line models, providing strong proof-of-concept of TEAD SMIs in targeting YAP/TAZ-mediated KRAS inhibitor resistance. Taken together, this work demonstrates activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.
ORGANISM(S): Homo sapiens
PROVIDER: GSE229071 | GEO | 2023/04/26
REPOSITORIES: GEO
ACCESS DATA