Analysis of the immune and astrocytic cell fraction 12h after cortical injury in Sema4B knockout mice
Ontology highlight
ABSTRACT: After central nervous system injury, a rapid neuroinflammatory response is induced. This response can be both beneficial and detrimental to neuronal survival in the first few days and increase the risk for neurodegeneration if it persists. Semaphorin4B (Sema4B), a transmembrane protein primarily expressed by cortical astrocytes, has been shown to play a role in neuronal cell death following injury. Our study shows that neuroinflammation is attenuated in Sema4B knockout mice and microglia/macrophage activation is reduced after cortical stab wound injury. In vitro, recombinant Sema4B enhances the activation of microglia following injury, suggesting astrocytic Sema4B functions as a ligand. Moreover, injury-induced activation of microglia is attenuated in the presence of Sema4B knockout astrocytes compared to heterozygous astrocytes. In vitro, experiments indicate Plexin-B2 is the Sema4B receptor on microglia. Consistent with this, microglia-specific Plexin-B2 knockout mice, similar to Sema4B knockout mice, also show a reduction in microglial activation after cortical injury. Finally, in Sema4B/Plexin-B2 double heterozygous mice, microglial activation is also reduced after injury, thus supporting the idea that both Sema4B and Plexin-B2 are part of the same signaling pathway. Taken together, we propose a model in which following injury, astrocytic Sema4B enhances the pro-inflammatory response of microglia/macrophages via Plexin-B2, leading to increased neuroinflammation.
Project description:Tissue repair after spinal cord injury (SCI) requires mobilization of immune and glial cells to form a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment, and matrix compaction. This process involves corralling, wherein phagocytic immune cells become confined to the necrotic core surrounded by an astrocytic border. Here, we elucidate a temporally distinct gene signature in injury-activated microglia/macrophages (IAM), which engages axon guidance pathways. Plexin-B2 is upregulated in IAM, which is required for motosensory recovery after SCI. Plexin-B2 deletion in myeloid cells impairs corralling, leading to diffuse tissue damage, inflammatory spillover, and hampered axon regeneration. Corralling begins early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 promotes microglia motility, steers IAM away from colliding cells, and facilitates matrix compaction. Our data thus establish Plexin-B2 as an important link that integrates biochemical cues and physical interactions of IAM with the injury microenvironment during wound healing.
Project description:Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of the ASD-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an AAV-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting epigenetic pathways in reactive gliosis and neuroinflammation in injury and neurological diseases.
Project description:Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of the ASD-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an AAV-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting epigenetic pathways in reactive gliosis and neuroinflammation in injury and neurological diseases.
Project description:Reactive changes of glial cells during neuroinflammation impact brain disorders and disease progression. Elucidating the mechanisms that control reactive gliosis may help understand brain pathophysiology and improve outcomes. Here, we report that adult ablation of the ASD-associated CHD8 in astrocytes attenuates reactive gliosis via remodeling chromatin accessibility, changing gene expression. Conditional Chd8 deletion in astrocytes, but not microglia, suppresses reactive gliosis by impeding astrocyte proliferation and morphological elaboration. Astrocyte Chd8 ablation alleviates lipopolysaccharide-induced neuroinflammation and septic-associated hypothermia in mice. Astrocytic CHD8 plays an important role in neuroinflammation by altering the chromatin landscape, regulating metabolic and lipid-associated pathways, and astrocyte-microglia crosstalk. Moreover, we show that reactive gliosis can be directly mitigated in vivo using an AAV-mediated Chd8 gene editing strategy. These findings uncover a role of ASD-associated CHD8 in the adult brain, which may warrant future exploration of targeting epigenetic pathways in reactive gliosis and neuroinflammation in injury and neurological diseases.
Project description:We found that Rack1 increased in microglia in AD mouse model. Conditional knockout of Rack1 in microglia reduced Aβ aggregation, alleviated neuroinflammation, and rescued cognitive impairments in AD mouse model. Mechanism investigation revealed that knockout of Rack1 in microglia decreased microglial numbers but increased astrocytic numbers and phagocytic activities via IGF1-IGF1R signaling.
Project description:Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.
Project description:The diffuse invasion of glioblastoma (GBM) cells into healthy brain tissue is a main contributor for the high lethality of this most frequent form of malignant brain tumor. Plexins are cell surface receptors for semaphorins and control cell adhesion and cytoskeletal dynamics in development and in adult physiology. Gene expression of Plexin-B2 is upregulated in GBM and correlates with its lethality. We show here that Plexin-B2 activity can reduce the cohesiveness of GBM cells, which facilitates their invasive capacity. Targeted deletion of Plexin-B2 in GBM cells increased their cohesion to each other, revealing that a major function of Plexin-B2 activity is to downregulate cell-cell adhesion, possibly by downregulating other cell adhesion systems. In an in vivo intracranial transplant model, invasion of Plexin-B2 mutant GBM cells was impaired, with cells invading shorter distances. Interestingly, the loss of Plexin-B2 also changed the migration mode of cells, with the balance of cells in brain stroma vs. capillary space shifted: Plexin-B2 mutant cells were more likely to adhere to the vasculature. Our structure-function analyses revealed that the Ras-GAP domain of Plexin-B2 that is the main functional output responsible for the cohesion regulating function of Plexin-B2. Transcriptomic analyses of Plexin-B2 KO cells suggests that Plexin-B2 loss in different GBM cell lines has no direct transcriptional target genes, however, consistently, cell adhesion molecules were changed in expression, suggesting that cells compensate for loss of Plexin-B2. Thus, Plexin-B2 acts as a key regulator of the cohesiveness of GBM cells, thereby facilitating their invasiveness.
Project description:GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease. Reactive astrocytes with an increased expression of intermediate filament (IF) proteins Glial Fibrillary Acidic Protein (GFAP) and Vimentin (VIM) surround amyloid plaques in Alzheimer's disease (AD). The functional consequences of this upregulation are unclear. To identify molecular pathways coupled to IF regulation in reactive astrocytes, and to study the interaction with microglia, we examined WT and APPswe/PS1dE9 (AD) mice lacking either GFAP, or both VIM and GFAP, and determined the transcriptome of cortical astrocytes and microglia from 15- to 18-month-old mice. Genes involved in lysosomal degradation (including several cathepsins) and in inflammatory response (including Cxcl5, Tlr6, Tnf, Il1b) exhibited a higher AD-induced increase when GFAP, or VIM and GFAP, were absent. The expression of Aqp4 and Gja1 displayed the same pattern. The downregulation of neuronal support genes in astrocytes from AD mice was absent in GFAP/VIM null mice. In contrast, the absence of IFs did not affect the transcriptional alterations induced by AD in microglia, nor was the cortical plaque load altered. Visualizing astrocyte morphology in GFAP-eGFP mice showed no clear structural differences in GFAP/VIM null mice, but did show diminished interaction of astrocyte processes with plaques. Microglial proliferation increased similarly in all AD groups. In conclusion, absence of GFAP, or both GFAP and VIM, alters AD-induced changes in gene expression profile of astrocytes, showing a compensation of the decrease of neuronal support genes and a trend for a slightly higher inflammatory expression profile. However, this has no consequences for the development of plaque load, microglial proliferation, or microglial activation. 2 cell types from 6 conditions: cortical microglia and cortical astrocytes from 15-18 month old APPswe/PS1dE9 mice compared to wildtype littermates. Biological replicates: microglia from APPswe/PS1dE9, N=7, microglia from WT, N=7, astrocytes from APPswe/PS1dE9, N=4, microglia from WT, N=4
Project description:Methamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational purposes. Besides disrupting the monoaminergic system and promoting oxidative brain damage, Meth also causes neuroinflammation, contributing to synaptic dysfunction and behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the brain, is a common feature in neurological disorders triggered by neuroinflammation. In this study, we investigated the mechanisms underlying the aberrant activation of microglia elicited by Meth in the adult mouse brain. We found that binge Meth exposure caused microgliosis and disrupted risk assessment behavior (a feature that usually occurs in individuals who abuse Meth), both of which required astrocyte-to-microglia crosstalk. Mechanistically, Meth triggered a detrimental increase of glutamate exocytosis from astrocytes (in a process dependent on TNF production and calcium mobilization), promoting microglial expansion and reactivity. Ablating TNF production, or suppressing astrocytic calcium mobilization, prevented microglia reactivity and abolished the behavioral phenotype elicited by Meth in the elevated plus maze (EPM). Overall, our data indicate that glial crosstalk is critical to relay alterations caused by acute Meth exposure.
Project description:Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Reactive astrocytes and microglia are associated with amyloid plaques in Alzheimer's disease (AD). Yet, not much is known about the molecular alterations underlying this reactive phenotype. To get an insight into the molecular changes underlying AD induced astrocyte and microglia reactivity, we performed a transcriptional analysis on acutely isolated astrocytes and microglia from the cortex of aged controls and APPswe/PS1dE9 AD mice. As expected, both cell types acquired a proinflammatory phenotype, which confirms the validity of our approach. Interestingly, we observed that the immune alteration in astrocytes was relatively more pronounced than in microglia. Concurrently, our data reveal that astrocytes display a reduced expression of neuronal support genes and genes involved in neuronal communication. The microglia showed a reduced expression of phagocytosis and/or endocytosis genes. Co-expression analysis of a human AD expression data set and the astrocyte and microglia data sets revealed that the inflammatory changes in astrocytes were remarkably comparable in mouse and human AD, whereas the microglia changes showed less similarity. Based on these findings we argue that chronically proinflammatory astrocyte and microglia phenotypes, showing a reduction of genes involved in neuronal support and neuronal signaling, are likely to contribute to the neuronal dysfunction and cognitive decline in AD. 2 cell types from 2 conditions: cortical microglia and cortical astrocytes from 15-18 month old APPswe/PS1dE9 mice compared to wildtype littermates. Biological replicates: microglia from APPswe/PS1dE9, N=7, microglia from WT, N=7, astrocytes from APPswe/PS1dE9, N=4, microglia from WT, N=4