Rescue of blood coagulation Factor VIII exon-16 mis-splicing by antisense oligonucleotides
Ontology highlight
ABSTRACT: The human Factor VIII (F8) protein is essential for the blood coagulation cascade and specific F8 mutations cause the rare bleeding disorder Hemophilia A (HA). Here, we investigated the impact of HA-causing single-nucleotide mutations on F8 pre-mRNA splicing. We found that 14/97 (∼14.4%) coding sequence mutations tested in our study induced exon skipping. Splicing patterns of 4/11 (∼36.4%) F8 exons tested were especially sensitive to the presence of common disease-causing mutations. RNA-chemical probing analyses revealed a three-way junction structure at the 3′ end of intron 15 (TWJ-3-15). TWJ-3-15 sequesters the polypyrimidine tract, a key determinant of 3′ splice site strength. Using exon-16 of the F8 gene as a model, we designed specific antisense oligonucleotides (ASOs) that target TWJ-3-15 and identified three that promote the splicing of F8 exon-16. Interaction of TWJ-3-15 with ASOs increases accessibility of the polypyrimidine tract and inhibits the binding of hnRNPA1-dependent splicing silencing factors. Moreover, ASOs targeting TWJ-3-15 rescue diverse splicing-sensitive HA-causing mutations, most of which are distal to the 3’ splice site being impacted. The TWJ-3-15 structure and its effect on mRNA splicing provide a model for HA etiology in patients harboring specific F8 mutations and provide a framework for precision RNA-based HA therapies.
ORGANISM(S): Homo sapiens
PROVIDER: GSE230495 | GEO | 2024/01/17
REPOSITORIES: GEO
ACCESS DATA