Project description:This SuperSeries is composed of the following subset Series: GSE22915: Mussel (Mytilus galloprovincialis) digestive gland tissue: gene expression profiles across an annual cycle GSE23049: Mytilus galloprovincialis: development of female gonads GSE23050: Mytilus galloprovincialis: development of male gonads GSE23051: Mytilus galloprovincialis: differences between male and female gene expression patterns in gonads (mantle tissue) Refer to individual Series
Project description:Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis-Menten kinetics, with a very high estimated KM (1722 µg DA mL-1) and a Vmax of 71.9 µg DA g-1 h-1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl--depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl--free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl- (or anion-) dependent transporter. In media with Na+ and Cl-, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride.
Project description:Transcriptional profiling of mussel (Mytilus galloprovincialis) digestive gland tissue comparing control tissue with tissue obtained from animals exposed for four days to sublethal amounts of Nickel, Chlorpyrifos, or their mixture. Background: Mixtures of chemicals present in aquatic environments may elicit toxicity due to additive or synergistic effects among the constituents or ‘vice versa’ the adverse outcome may be reduced by antagonistic interactions. Deviations from additivity should be explained either by the perturbations of toxicokinetic parameters and/or chemical toxicodynamics. We addressed this important question in marine mussels exposed subchronically to a binary mixture made of two wide-spread pollutants: the heavy metal Nickel and the organic phosphorus pesticide Chlorpyrifos. To this aim, we proposed the use of a systems approach based on the evaluation and integration of different disciplines, i.e. high throughput gene expression profiling, functional genomics, stress biomakers and toxicokinetics. Results: Stress biomarkers showed statistically significant antagonistic deviations from the reference model systems to predict mixture toxicity which are based either on simple additivity or non-interaction. While toxicokinetic modeling did not explain mixture interactions, gene expression profiling and further functional genomics analysis provided clues that the decrement of toxicity may arise from the development of specific toxicodynamics. Multivariate statistics of microarray and quantitative PCR data showed two separate patterns for the single chemicals and a composite complex profile for the mixture suggesting the occurrence of interactive molecular responses. The latter signature accounted for differentially expressed genes whose relative expression values were either in trend or in contrast with those found due to single substance treatments and a relevant set of sequences which were exclusive of the mixture gene list. Conclusion: The functional genomics assessment fits with biological data to indicate the occurrence of different toxicodynamic events and ‘in general’ a decrease of toxicity, driven by the mitigation or even abolishment of lysosomal responses such as the lipid metabolic disorder observed exclusively in single chemical-exposed samples. Furthermore, our results emphasized the importance of the application of mechanistic approaches and the power of systems assessment to study toxicological responses in ecological relevant organisms.
Project description:Transcriptional profiling of natural population of mussels (Mytilus galloprovincialis) -digestive gland tissue- comparing female individuals sampled in the Bizerta Lagoon, Tunisia, across May 2007 - April 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:The harmful effects of diarrhetic shellfish poisoning (DSP) toxins on mammalian cell lines have been widely assessed. Studies in bivalves suggest that mussels display a resistance to the cytogenotoxic effects of DSP toxins. Further, it seems that the bigger the exposure, the more resistant mussels become. To elucidate the early genetic response of mussels against these toxins, the digestive gland and the gill transcriptomes of Mytilus galloprovincialis after Prorocentrum lima exposure (100,000 cells/L, 48 h) were de novo assembled based on the sequencing of 8 cDNA libraries obtained using an Illumina HiSeq 2000 platform. The assembly provided 95,702 contigs. A total of 2286 and 4523 differentially expressed transcripts were obtained in the digestive gland and the gill, respectively, indicating tissue-specific transcriptome responses. These transcripts were annotated and functionally enriched, showing 44 and 60 significant Pfam families in the digestive gland and the gill, respectively. Quantitative PCR (qPCR) was performed to validate the differential expression patterns of several genes related to lipid and carbohydrate metabolism, energy production, genome integrity and defense, suggesting their participation in the protective mechanism. This work provides knowledge of the early response against DSP toxins in the mussel M. galloprovincialis and useful information for further research on the molecular mechanisms of the bivalve resistance to these toxins.
Project description:Differential expression analysis of digestive gland and gill tissues of mussels (Mytilus galloprovincialis) exposed to dinoflagellates (Prorocentrum lima), producers of okadaic acid, at a concentration of 200 cells/ml for one day. Each sample consists in total RNA was extracted from pooled tissues of 5 individuals.
Project description:Transcriptional profiling of mussel (Mytilus galloprovincialis) digestive gland tissue comparing control tissue with tissue obtained from animals exposed for four days to sublethal amounts of Nickel, Chlorpyrifos, or their mixture. Background: Mixtures of chemicals present in aquatic environments may elicit toxicity due to additive or synergistic effects among the constituents or ‘vice versa’ the adverse outcome may be reduced by antagonistic interactions. Deviations from additivity should be explained either by the perturbations of toxicokinetic parameters and/or chemical toxicodynamics. We addressed this important question in marine mussels exposed subchronically to a binary mixture made of two wide-spread pollutants: the heavy metal Nickel and the organic phosphorus pesticide Chlorpyrifos. To this aim, we proposed the use of a systems approach based on the evaluation and integration of different disciplines, i.e. high throughput gene expression profiling, functional genomics, stress biomakers and toxicokinetics. Results: Stress biomarkers showed statistically significant antagonistic deviations from the reference model systems to predict mixture toxicity which are based either on simple additivity or non-interaction. While toxicokinetic modeling did not explain mixture interactions, gene expression profiling and further functional genomics analysis provided clues that the decrement of toxicity may arise from the development of specific toxicodynamics. Multivariate statistics of microarray and quantitative PCR data showed two separate patterns for the single chemicals and a composite complex profile for the mixture suggesting the occurrence of interactive molecular responses. The latter signature accounted for differentially expressed genes whose relative expression values were either in trend or in contrast with those found due to single substance treatments and a relevant set of sequences which were exclusive of the mixture gene list. Conclusion: The functional genomics assessment fits with biological data to indicate the occurrence of different toxicodynamic events and ‘in general’ a decrease of toxicity, driven by the mitigation or even abolishment of lysosomal responses such as the lipid metabolic disorder observed exclusively in single chemical-exposed samples. Furthermore, our results emphasized the importance of the application of mechanistic approaches and the power of systems assessment to study toxicological responses in ecological relevant organisms. Mussel MytArray 1.0 (Platform GPL1799)-based arrays: Three-condition experiment. Dual color competitive hybridizations. Common reference (vehicle treated animals, 0.02% Dimethyl sulfoxide); Pools of six animals. Biological replicates: 4 controls, 4 Nickel, 4 Chlorpyrifos. One replicate per array. Mussel MytArray 1.1 (Platform GPL10269)-based arrays: Four-condition experiment. Dual color competitive hybridizations. Common reference (vehicle treated animals, 0.02% Dimethyl sulfoxide); Pools of six animals. Biological replicates: 5 controls, 1 Nickel, 3 Chlorpyrifos, 5 mixture. One replicate per array.
Project description:Transcriptional profiling of natural population of mussels (Mytilus galloprovincialis) -digestive gland tissue- comparing female individuals sampled in the Bizerta Lagoon, Tunisia, across May 2007 - April 2008. Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the mantle (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the M-bM-^@M-^\hotM-bM-^@M-^] months (MayM-bM-^@M-^SAugust) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression. Loop design: Female individuals from 12 different months across one year (May 2007 to April 2008). Dual color competitive hybridizations (month n vs month n+1) including dye swap. Single individuals. Three (May 2007 to December 2007) or four biological replicates (January 2008 to April 2008 ). One replicate per array.
Project description:Direct comparison of the transcriptional patterns between male and female in the digestive gland of a natural population of the marine mussel Mytilus galloprovincialis sampled in the Bizerta Lagoon, Tunisia, across November 2007 -February March 2008 (four stages, winter peak). Background: Seasonal environmental changes may affect the physiology of Mytilus galloprovincialis (Lam.), an intertidal filter-feeder bivalve occurring commonly in Mediterranean and Atlantic coastal areas. We investigated seasonal variations in relative transcript abundance of the digestive gland and the Digestive gland (gonads) of males and females. To identify gene expression trends, we used a medium-density cDNA microarray (1.7 K probes) in dual-color competitive hybridization analyses. Results: Hierarchical clustering of digestive gland microarray data showed two main branches, distinguishing profiles associated with the “hot” months (May–August) from the other months. Genes involved in chitin metabolism, associated with mussel nutrition and digestion, showed higher expression during summer. Moreover, we found different gene expression patterns in the digestive glands of males and females during the four stages of mussel gonadal development. Microarray data from gonadal transcripts also displayed clear patterns during the different developmental phases with peak relative mRNA abundance at the ripe phase (stage III) for both sexes. Conclusion: These data showed a clear temporal pattern in gene expression profiles of mussels sampled over an annual cycle. Physiological response to thermal variation, food availability, and reproductive status across months may contribute to variation in gene expression.
Project description:BACKGROUND: Many pesticides have been shown to act as endocrine disrupters. Although the potencies of currently used pesticides as hormone agonists/antagonists are low compared with those of natural ligands, their ability to act via multiple mechanisms might enhance the biological effect. The organophosphate Chlorpyrifos (CHP) has been shown to be weakly estrogenic and cause adverse neurodevelopmental effects in mammals. However, no information is available on the endocrine effects of CHP in aquatic organisms. In the digestive gland of the bivalve Mytilus galloprovincialis, a target tissue of both estrogens and pesticides, the possible effects of CHP on the responses to the natural estrogen 17?-estradiol (E(2)) were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Mussels were exposed to CHP (4.5 mg/l, 72 hrs) and subsequently injected with E(2) (6.75 ng/g dw). Responses were evaluated in CHP, E(2) and CHP/E(2) treatment groups at 24 h p.i. by a biomarker/transcriptomic approach. CHP and E(2) induced additive, synergistic, and antagonistic effects on lysosomal biomarkers (lysosomal membrane stability, lysosome/cytoplasm volume ratio, lipofuscin and neutral lipid accumulation). Additive and synergistic effects were also observed on the expression of estrogen-responsive genes (GST?, catalase, 5-HTR) evaluated by RT-Q-PCR. The use of a 1.7K cDNA Mytilus microarray showed that CHP, E(2) and CHP/E(2), induced 81, 44, and 65 Differentially Expressed Genes (DEGs), respectively. 24 genes were exclusively shared between CHP and CHP/E(2), only 2 genes between E(2) and CHP/E(2). Moreover, 36 genes were uniquely modulated by CHP/E(2). Gene ontology annotation was used to elucidate the putative mechanisms involved in the responses elicited by different treatments. CONCLUSIONS: The results show complex interactions between CHP and E(2) in the digestive gland, indicating that the combination of certain pesticides and hormones may give rise to unexpected effects at the molecular/cellular level. Overall, these data demonstrate that CHP can interfere with the mussel responses to natural estrogens.