Project description:PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME than can be targeted therapeutically in cancer.
Project description:PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME that can be targeted therapeutically in cancer.
Project description:Genome wide DNA methylation profiling of primary uveal melanoma cells, normal uveal melanocytes, neural crest stem cells, embryonic stem cells and uveal melanoma cell lines. The Illumina Infinium 27k Human DNA methylation Beadchip Rev B was used to obtain DNA methylation profiles across approximately 27,000 CpGs in the samples. Samples included 58 primary UM, 3 NUM and NCSC controls and 2 cell lines. Bisulphite converted DNA from the 63 samples were hybridised to the Illumina Infinium 27k Human Methylation Beadchip Rev B
Project description:Genome wide DNA methylation profiling of primary uveal melanoma cells, normal uveal melanocytes, neural crest stem cells, embryonic stem cells and uveal melanoma cell lines. The Illumina Infinium 27k Human DNA methylation Beadchip Rev B was used to obtain DNA methylation profiles across approximately 27,000 CpGs in the samples. Samples included 58 primary UM, 3 NUM and NCSC controls and 2 cell lines.
Project description:Purpose: Epigenetic mechanisms and alterations in uveal melanoma (UM) development are still not well understood. In this pilot study, histone posttranslational modifications (PTMs), which are epigenetic mechanisms regulating gene expression, were analyzed in UM formalin-fixed paraffin-embedded (FFPE) tissues and control tissue as well as in UM cell lines and healthy melanocytes to provide a deeper insight into the pathogenesis of UM and the potentially prognostic relevance of these molecular markers. Methods: FFPE tissue of UM (n=24) and normal choroid (n=4) as well as human UM cell lines (n=7), human skin melanocytes (n=6) and uveal melanocytes (n=2), were analyzed by a quantitative mass spectrometry (MS) approach.