A cell type specific error correction signal in posterior parietal cortex
Ontology highlight
ABSTRACT: Neurons in posterior parietal cortex contribute to the execution of goal-directed navigation and other decision-making tasks. Although molecular studies have catalogued over fifty cortical cell types, it remains unknown what distinct functions they serve during goal-directed navigation. Here, we identified a molecularly defined subset of somatostatin (Sst) inhibitory neurons that, in mouse posterior parietal cortex, carry a novel cell type-specific error correction signal for navigation. We obtained repeatable experimental access to these cells using an adeno-associated virus (AAV) in which gene expression is driven by an enhancer that functions specifically in a subset of Sst cells. We found that during goal-directed navigation in a virtual environment, this subset of Sst neurons activates in a synchronous pattern that is distinct from the activity of surrounding neurons, including other Sst neurons. Using in vivo two-photon photostimulation and ex vivo paired patch clamp recordings, we show that nearby cells of this Sst subtype excite each other through gap junctions, revealing a self-excitation circuit motif that contributes to the synchronous activity of this cell type. Remarkably, these cells selectively activate as mice execute course corrections for deviations in their virtual heading during navigation toward a reward location, both for self- and experimentally-induced deviations. We propose that this subtype of Sst neurons provides a self-reinforcing and cell type-specific error-correction signal in posterior parietal cortex that may aid the execution and learning of accurate goal-directed navigation trajectories.
ORGANISM(S): Mus musculus
PROVIDER: GSE232200 | GEO | 2023/05/11
REPOSITORIES: GEO
ACCESS DATA